Smart car starter

Electrical transmission or interconnection systems – Vehicle mounted systems – Automobile

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C307S009100, C340S005600, C340S005640, C340S005720, C180S167000

Reexamination Certificate

active

06559558

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention pertains to a device to activate a remote car starter when out of range of the starter's receiver unit. More particularly, the invention pertains to a housing for a remote car starter that activates such a starter at one or more pre-set times of the day, or on demand.
2. Description of Related Art
Many individuals commute by car to and from work at substantially the same time every day. During seasons when the weather is hot or cold, and especially when snow or ice has accumulated on the car, it is helpful for such individuals to start their cars, say, ten minutes before leaving the office. Remote automobile starters are known in the art. Their use allows the car in which they are installed to be started remotely so as to warm up inside, or cool down inside, as the case may be, by the time the operator arrives at the car and enters its interior. If snow or ice has built up on the car, remote car starters also allow the snow or ice to melt and run off by the time the operator is ready to begin driving. Finally, such devices allow the engine to reach normal operating conditions before it is moved, without requiring the operator to sit idle in the car for a period of time.
Remote automobile starters employ, inside the car, a device activated by receiving a command signal from a remote transmitter operated by the user, the receiver in turn generating signals to control, via circuitry coupled to the vehicle's wiring, operation of the vehicle's starting system. See, e.g., Bucher, U.S. Pat. No. 4,080,537, Remote Starting System For A Combustion Engine (1978); Garlinghouse, U.S. Pat. No. 4,598,209, Remote Control Engine Starter (1986); Long et al., U.S. Pat. No. 5,024,186, Remote Automobile Starter, (1991); Gottlieb et al., U.S. Pat. No. 5,656,868, Remote Vehicle Starter For A Standard Transmission Vehicle (1997).
The transmitter portion of the remote car starters exemplified by the above-cited references is carried by the driver in his or her pocket, perhaps on a key chain. When the driver wants the car to start remotely, he or she pushes a button on the transmitter, which causes the latter to transmit, via radio frequency emissions, a command to the receiver portion to start the motor. The receiver portion receives the command and responds by causing the car to start as described above. The driver typically pushes such transmitter button an appropriate interval of time, such as ten minutes, prior to the time he or she anticipates arriving at the vehicle.
There are at least two difficulties with this prior-art approach. First, the driver may forget to activate the starter at the right time, or may be unaware of the time of day, especially if he or she is concentrating on work, or on getting ready to leave for work, as the case may be. Additionally, in many instances the driver must park a fair distance away from his or her office, shop floor, or other work site, out of the range of the remote starter. Hence, even if the driver remembers to activate the transmitter at the appropriate time prior to leaving work, he or she must run out into the hot or freezing cold weather, half way across the parking lot, until the remote starter is in range of the car and, only then, press the transmitter button to cause the car to start. This has made for an unseemly spectacle observed by the inventors at some work sites, in which a number of factory workers have been seen running half-way across the parking lot in inclement weather, only to push a button and run back inside the factory.
Due to the above limitations of the prior art, there is a need for a device to automatically start a car at pre-set times of the day, or on demand, without the driver having to be in range of the remote starter. The user of such a device should be able to set one or more times of day when the car will start automatically. Further, because of the large existing base of remote car starters deployed to customers, the device should work in tandem with existing starters, rather than replace them. Such would reduce the cost of manufacturing, as the device would not have to contain transmitters, receivers or car-starting circuitry. To be most readily acceptable to a user, there should be no need for the device to be installed anywhere on the car. This is particularly important because installation can be costly and can cause the vehicle to be tied up for several hours. The need for installation also introduces the non-trivial probability of installation errors.
In addition to the above, there is a need for an embodiment in which the remote starter is responsive to a user's signal that is originated telephonically from a remote location. Such embodiment is particularly useful when the user's plans change so that remote starting of the car is needed at other than pre-set times of the day, or when the user is unable to predict when remote starting of the car will be desired.
SUMMARY OF THE INVENTION
An apparatus solving the above-described problems comprises a container for housing the receiver portion of a remote car starter. The housing has a cavitated area adapted to securely retain the car starter receiver therein, a programmable timer, a power source, an on/off switch for arming/disarming the timer, a processor unit responsive to a signal from the timer, and a first actuator-in one form being a servomotor-for actuating, at the direction of the processor unit, the transmitter portion of the car starter. The processor unit is capable of being placed in a mode where it causes depression of the button twice, as some car-starter transmitters require such double-depression. In some embodiments, the invented device alternately or additionally comprises a dial-up sub-unit similar to a conventional “beeper” for receiving a telephonically-originated message. When such a message is received, instead of producing a beeping sound or a vibration, the dial-up sub-unit causes activation of the servomotor. Accordingly, upon being activated-via receiving a signal from either the timer or the dial-up sub-unit-the servomotor causes the depressing of a button on the transmitter portion of the remote car starter, thereby actuating the remote starter and starting the vehicle's engine.
The user of the invented apparatus places the transmitter portion of a remote car starter device inside the cavitated area, and sets the timer to activate the device at one or more times of the day. The user then places the apparatus, together with the transmitter inside, in the glove box or trunk of the car, where it is guaranteed to be in range of the receiver portion of the remote car starter. In this manner, the transmitter of the remote car starter is activated automatically so as to cause the car to automatically start at the pre-specified time(s) of the day.
In a still further embodiment, the invented apparatus receives and remembers, or “learns,” the signal generated by the transmitter portion of the remote car starter device. Subsequently, the apparatus is placed, for example, in the glove box or trunk of the car, and at pre-set time(s) of the day, emits the learned signal, thus emulating the transmitter portion of the car starter device. In this embodiment, the transmitter portion of the car starter device need not be used to start the car after the invented apparatus learns its signal, and hence there is no cavitated area or servomotor, but instead a receiver (for receiving the transmitter's signal) and an emitter (for emitting the same signal at a later time). As with the servo-motor embodiments, this embodiment also optionally includes, in addition to the timer or instead of it, a dial-up sub-unit which, when it receives a telephonically-originated message, causes emission of the learned signal (instead of activation of the servomotor).
These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.


REFERENCES:
patent: 3985982 (1976-10-01), Schneidinger
patent: 4080537 (1978-03

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Smart car starter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Smart car starter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Smart car starter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3047212

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.