Surgery – Instruments – Orthopedic instrumentation
Reexamination Certificate
1999-09-17
2001-11-27
Smith, Jeffrey A. (Department: 3732)
Surgery
Instruments
Orthopedic instrumentation
C606S104000
Reexamination Certificate
active
06322563
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to surgical fastener systems, and more particularly to surgical fasteners in the form of tacks, and to apparatus and methods for application of surgical fasteners for approximation and fixation of tissue and membranes.
BACKGROUND OF THE INVENTION
During surgical procedures, tissue and membrane fixation and approximation are often necessary. Various types of surgical fastening devices are used for accomplishing such functions. Some conventional fastening devices include, for example, sutures, staples, screws, clips and anchoring devices.
Sutures are generally used in tissue approximation. However, sutures require significant skill for precise placement and, if multiple closures are required, are time consuming to apply. Additionally it is often not possible to use sutures to approximate tissue and membrane located inside many tight areas of the body. Staples generally are used to repair large areas and typically require minimal precision in their placement. Clips are typically used in endoscopic and laparoscopic closure or ligation of vessels.
Some fasteners having a generally tack-like structure have been developed. Said fasteners are disclosed in, for example, U.S. Pat. Nos. 4,873,976; 5,059,206; 5,246,441; 5,376,097; 5,562,704; 5,827,298; and 5,843,084.
Such tack-like structures generally comprise a shaft, a front portion and a back base portion. Additionally, each structure further comprises a type of barb-like or arresting means along the body to aid in holding the structure within the body. The focus of use of these tack-like structures is generally for repairing the meniscus. Thus, these tack-like structures are relatively large, with lengths ranging from about 0.2-0.64 inch and diameters ranging from about 0.04 to 0.07 inch. Further, they are designed to either have a significantly rigid shaft for insertion into the tough meniscal area or they are inserted while held within a penetrating tool having a sharp or pointed leading edge. In the situation where a penetrating tool is used, the tool cuts through the tissue and the tack-like fastener is carried through the tissue by the tool, and deposited in the tissue. This is disadvantageous in part because the tool which carries the tack must be larger than the tack. This leads to a larger cut within the tissue than necessary, and an increase in trauma to the area. Additionally, when the fasteners have barb means or arresting means protruding from the shaft, the tool must accordingly be made even larger to house the barb-like or arresting means. Alternatively, where the barb means or arresting means protrude outside of the tool or where no tool is used, the barb-like or arresting means make cuts in the tissue as the tack-like fastener is inserted, thereby increasing trauma to the area.
There is a need for surgical fastening devices that are quickly applied and are suitable for small tissue approximation in situations requiring multiple points of connection and fine precision. Due to the nature of such tissue repair, small and relatively flexible surgical fasteners are needed. For example, surgical repair of cartilage involves the affixation of a temporary covering, such as the periosteum, to a portion of cartilage. Small and flexible fasteners are required for the fixation of the delicate and thin covering to the generally thin underlying cartilage, and the fasteners must be inserted close to the edges of the covering without tearing through the edges of the covering. Accordingly, there is also a need for a method of handling small sized, flexible fasteners for proper alignment and insertion into the body. Additionally, there is a need for surgical fastening devices and methods that may be used to approximate tissue and membrane or other tissue located in tight areas inside of the body. Further needed are surgical fastening devices and methods of inserting the surgical fasteners to minimize trauma to the area during insertion.
SUMMARY OF THE INVENTION
The present invention provides novel surgical fasteners and apparatus and methods for use thereof.
The surgical fastener of the present invention is generally in the form of a tack, and comprises a conical head, a tail section, and an elongate, preferably flexible, rod extending in between the conical head and the tail. The elongate rod and the conical head lie generally along the same longitudinal axis, and the elongate rod has a diameter less than the proximal diameter of the conical head. Thus, the back (proximal) surface of the conical head extends beyond and is preferably generally normal, or perpendicular to, the outer surface of the elongate rod. The tail extends radially from a proximal portion of the rod. Extending from the tail is a transverse locking member that is offset from the longitudinal axis of the head and the rod.
In preferred embodiments, the distal portion of the tail section forms an acute angle with a back portion of the rod, and the transverse locking member is generally formed by a pair of cylindrical or frusto-cylindrical protrusions located on each side of the tail section, offset from the axis of the head and rod members.
The preferred location of the transverse locking member, offset from the longitudinal axis of the head and the rod, aids in the positioning and maintenance of the tack in a desired location. Specifically, for example, where the tack is used in holding a first object such as a temporary covering to a second object such as cartilage, the tack's head and rod are buried in the cartilage, while the temporary covering is lodged between the transverse locking member and the cartilage. The back of the tack's conical head functions to hold the tack in the cartilage and prevents motion of the tack backwards out of the cartilage. The transverse locking member acts to hold the tack in the opposite direction and prevents the tack from moving forward through the temporary covering and into the cartilage. The covering is lodged in between the cartilage and the transverse locking member, such that the transverse locking member forms a seal between the cartilage and the covering. The offset transverse locking member is designed to pull the covering upward under it, thereby permitting the tacked covering to form a seal between the two objects which is much cleaner and closer to flush with the surface of the joined objects.
In some embodiments, the surgical fastener further comprises a ramp-like support that extends proximally and inwardly from the back side of the conical head to the elongate rod, thereby further supporting the conical head.
Insertion of the surgical fasteners is aided by the use of tack applicators. The tack applicators of the present invention preferably comprise an elongate handle, a loading tip, and a carrier assembly.
More particularly, the carrier assembly generally comprises body portion and a cannula extending from the front of the body portion. To aid in the handling of the small-sized tacks, the cannula of the carrier assembly is first used to grasp the rod portion of the tack. The cannula is provided with a slot on one side, from which the tail section, transverse locking member, and preferably the ramp-like support, all protrude. The conical head of the tack extends out and beyond the front of the cannula.
Preferably, the inner diameter of the cannula is sized to fit closely around the rod so as to engage the rod in a snug, frictional fit. In some embodiments, the tack further comprises at least one small bump on the outer surface of the cylindrical rod to aid in the frictional fit of the tack within the cannula. The outer diameter of the cannula is preferably sized to be less than or equal to the maximum diameter of the conical head of the tack, thereby minimizing the size of the insertion cut to the size of the conical head of the tack.
The loading tip of the tack applicator is designed to grasp onto the body portion of the carrier assembly from the proximal end, with the conical head of the tack extending out and beyond the distal or front end of the loadi
Clark Brian
Cummings Joel W.
Deangelis Roland
Gala Jesse
Mulhauser Paul
Allison Richard D.
DesRosier Thomas J.
Genzyme Corporation
Priddy Michael B.
Smith Jeffrey A.
LandOfFree
Small tissue and membrane fixation apparatus and methods for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Small tissue and membrane fixation apparatus and methods for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Small tissue and membrane fixation apparatus and methods for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2583663