Small-sized hydroelectric power generating apparatus

Prime-mover dynamo plants – Fluid-current motors

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C290S043000

Reexamination Certificate

active

06559553

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of Invention
The present invention relates to a small-sized hydroelectric power generating apparatus using water power generated by flow of water passing through a faucet.
2. Related Art
Conventional, an automatic water faucet apparatus is known well, in which by detecting by a sensor that a user holds out his hand beneath a faucet, water flows from the faucet. Further, recently, an apparatus is also proposed, in which a small-sized power generating apparatus is provided at a fluid passage of such the automatic water faucet apparatus, and the consumption power of a circuit of the afore-mentioned sensor is supplied by storing the electric power obtained by this small-sized power generating apparatus (refer to Unexamined Japanese Utility Model Publication Hei. 2-65775).
The constitution of the afore-mentioned small-sized hydroelectric power generating apparatus will be briefly described below. A water wheel is provided at a fluid passage used as a passage of flowing water, and this water wheel rotates upon reception of water power of the flowing water. For a rotational shaft of the water wheel, a rotator integrally fixed to the shaft is provided. The outer surface of this rotator becomes a magnetized rotor magnet, and this rotor magnetic is arranged opposed to pole teeth of a stator portion with a wall of non-magnetic member between. Further, for this stator portion, a stator coil is provided so as to interlink to magnetic fluxes passing the pole tooth. And, the above-mentioned water wheel rotates upon reception of the water power of the flowing water, whereby the rotor magnetic rotates relatively in relation to the stator portion. Since the rotor is magnetized multipolar, change is produced in flow of the magnetic fluxes flowing in the stator portion. As a result, an electromotive force is produced in the stator coil in a direction where the change in the flow of the magnetic fluxes can be prevented. After this electromotive force was rectified, it is stored in a storage battery.
As described above, the small-sized hydroelectric power generating apparatus is so constructed that the water wheel receives the water power of the flowing water, whereby the multipolar magnetized rotor magnet rotates together with the water wheel. By the way, between this rotor magnet and the pole tooth arranged outside of the magnet so as to be opposed to the magnet, detent torque is produced. This detent torque gives resistance to rotation of the water wheel. Therefore, such a problem is produced that the water wheel does not rotate smoothly, or the water wheel does not rotate at all if the amount of the flowing water is a little. If the gap between the rotor magnet and the pole tooth is expanded, the detent torque is reduced, so that the afore-mentioned problem can be prevented. However, the effective magnetic fluxes necessary to generate the electric power are also reduced together. Accordingly, if the gap between them is made wider than it needs, the electric power cannot be generated effectively. From this reason, in this type of small-sized hydroelectric power generating apparatus, such a proposition that power generation is performed efficiently with a smaller amount of flowing water cannot be solved.
Further, the above-mention small-sized hydroelectric power generating apparatus is so constructed that a water wheel is surrounded with a wall, and an ejection hole for ejecting water to vane portions of the water wheel is formed in this wall. This ejection hole is used in order to rotate the water wheel efficiently by suitably throttling the amount of the water entering from an inlet. It is important to improve the rotational efficiency of the water wheel since it connects to the improvement of the power generation efficiency of the electric power generating apparatus. In order to improve the ejection efficiency of water, it is necessary to calculate more accurately positional accuracy between the ejection hole and the vane portion of the water wheel, an angle of the ejection hole to the water wheel, a hole diameter, a shape of the wall having the ejection hole, a shape of a fluid passage outside of the wall, and to perform a high level of machining.
In consideration of the rotational efficiency of the water wheel, it is preferable that the number of the above-mentioned ejection holes is three, four, or more. In addition, the ejection hole is orthogonally opposed to the vane of the water wheel, which contributes to improvement of the rotational efficiency of the water wheel. However, in case that the number of the ejection holes is three or more, and the ejection hole is not opposed to the central axis but orthogonally opposed to the vane, machining is very complicated and expensive. Namely, it is because it is necessary to increase the number of molds at the machining time of the wall according to the number of the ejection holes and facing (angle) of the hole or to turn-separate the mold at the mold separation time.
Accordingly, in the conventional cases, a water wheel that is cheap in a molding cost is selected rather than the rotational efficiency of the water wheel. Namely, so that the apparatus can be molded with a two-divided and simple two-directional separation mold, the number of the above-mentioned ejection holes is set to two or one, and the angle of each ejection hole to the water wheel is frequently set to a range where machining can be performed with a simple bi-directional separation mold. Namely, in the conventional small-sized hydroelectric power generating apparatus, generally, about two ejection holes were formed in the surrounding wall of the water wheel, and there ware not many ideas for the angle of each ejection hole to the water wheel. Therefore, the rotational efficiency of the water wheel was low and the power generating efficiency was also low.
SUMMARY OF INVENTION
In view of the above problem, a first object of the invention is to provide a small-sized hydroelectric power generating apparatus constructed so that in order to effectively generate electric power with a small amount of flowing water, detent torque between the a rotor magnet and a pole tooth is kept low, and the loss of magnetic fluxes effective to power generation is small.
In view of the above problem, a second object of the invention is to provide a small-sized hydroelectric power generating apparatus which has such structure that an ejection hole for efficiently ejecting water to the water wheel can be formed without using many split molds and a complicated machining method such as turn-separation, and which can improve rotational efficiency of the water wheel and also power generating efficiency.
A small-sized hydroelectric power generating apparatus according to the invention includes a body case having a fluid passage, a water wheel that is provided at the fluid passage and rotates with passing of the fluid having the predetermined flowing amount, and a rotator that is coupled to this water wheel, rotates with the water wheel, and is used as a rotor portion arranged opposed to a stator portion, in which this rotor portion is relatively rotated in relation to the above stator portion with the passing of the fluid thereby to generate electric power. This small-sized hydroelectric power generating apparatus is provided in that the stator portion has pole teeth that are arranged in the circumferential direction at regular intervals so as to be opposed to the peripheral surface of a rotor magnet of the rotor portion, and a circumferential gap between the adjacent pole teeth is set to 1.5 times or less the size of a radial gap between each pole tooth and the rotor magnet.
As described above, the gap between the pole teeth is set to 1.5 times or less the size of the gap between each pole tooth and the rotor magnet, whereby the gap between the pole teeth becomes much narrower, so that detent torque becomes small, the water wheel and the rotator can be rotated smoothly even with a small amount of flowing water, and power generation can be efficiently performed. According to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Small-sized hydroelectric power generating apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Small-sized hydroelectric power generating apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Small-sized hydroelectric power generating apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3025400

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.