Small caliber munitions detonation furnace and process of...

Furnaces – Refuse incinerator – For explosive or radioactive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C110S255000, C432S241000

Reexamination Certificate

active

06834597

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a furnace that is useful in safely detonating or demilitarizing munitions or explosives, particularly small caliber munitions. The preferred variation of the invention includes a series of chambers having a set of runners or tracks passing amongst the various chambers to allow movement of the munitions from chamber to chamber in trays. The first chamber is heated in such a way so that a tray of munitions placed on the runners in this chamber are baked and detonated. After the detonation is generally complete, the tray containing the then-detonated munition fragments is slid through an opening at the end of that heated detonation chamber into a first cooling chamber. Generally, this movement takes place by addition of another tray containing non-detonated munitions into the first chamber. The furnace may also contain a second cooling chamber to assure both that the subject munitions are detonated and to allow then-safe exiting of the completely detonated munitions from the second cooling chamber onto an external extension of the track. The furnace is configured so that the munitions, whether detonated or not, remain in trays which may be slid through an operating unit without substantial hazard. The invention preferably includes a scrubber for removing noxious or deleterious components of gases produced by the detonation before it is passed into the atmosphere. Finally, the invention includes a method of using a chambered furnace to detonate small arms munitions or other explosives in the manner outlined above.
BACKGROUND OF THE INVENTION
Sportsmen and the armed services buy and store ammunition prior to its eventual use. However, the shelf life of ammunition is not particularly lengthy. Additionally, if the ammunition if improperly stored, perhaps in the presence of excess or widely varying heat or moisture or pressure, the chemical compounds used in propelling the munition payload may become unstable or inert. After some period of time, the ammunition is simply considered unfit for use. At some military installations, old ammunition was simply buried in a landfill with the understanding that landfills would not be disturbed. However, due to the demilitarization of many military installations and the potential for contamination of ground water, ammunition disposed of in such way has become a liability to be dealt with.
Demilitarization of munitions that have been buried or are simply past useful date by incineration in an open pit was practiced for many years. However, with the imposition of clean air regulations over the past several years, such open air incineration is no longer a viable alternative for disposal of ammunition.
There are a variety of ways to deal with material such as this. Many of the procedures and devices already known are specific in their intent to recycle, e.g., cartridge cases for reloading. One such procedure is shown in U.S. Pat. No. 5,434,336, to Adams, et al. Adams shows a method for stabilizing “energetics,” including explosives, propellance, pyrotechnics, and obsolete munitions via process of reaction or liquid sulfur. The reaction products are suitably non-explosive and safe.
Another process for chemically demilitarizing a small caliber cartridge is with the intent that the cartridge cases be reused, is found in U.S. Pat. No. 5,714,707, to Ruia. The various cases are flushed with a chemical solution such as sulfuric acid to dissolve a bonding material holding the components of the explosive primer mix together. After dissolution of that binder, the primer mix breaks apart and flows into the case. After removal of the explosive primer, the deprimed cases are rinsed and used for reloading or in scrap recovery. The sulfuric acid is said both to desensitize the primer composition without inducing significant stress cracking in the cases.
There are a variety of incinerator-based methods and devices useful in demilitarizing ammunition. These procedures generally are not used with the intent of reusing the cartridges, but instead, produce only reclaimable metals.
U.S. Pat. No. 5,207,176, to Morhard, et al., describes a process for treating such materials using a rotary kiln having a helical flight within. Similarly, U.S. Pat. No. 5,522,326, to Vollhardt, also shows a rotary kiln used variously on ammunition or on material containing chemical warfare agents.
U.S. Pat. No. 5,582,119, to Barkdoll, shows a vessel containing a hot granular bed of material (such as sand) to ignite explosive waste and to dampen any forces generated by the ignition of that waste.
U.S. Pat. No. 5,423,271, to Schulze, shows a process for use of incineration trays for the decomposition of various explosives. The trays are passed through a furnace as a part of a conveyor-like train.
U.S. Pat. Nos. 5,613,453; 5,884,569, and 6,173,662 all to Donovan, show an explosion chamber made up of a double walled, steel structure anchored to a concrete foundation. The explosive chamber has double walled access doors for charging materials to be destroyed. The floor of the chamber is covered with granular shock damping bed such as pea gravel.
U.S. Pat. No. 5,649,324, to Fairweather, et al., discusses a general use of an incineration reactor to deflagrate explosives. “Deflagration” is generally the non-explosive reaction of explosive material. The Fairweather, et al. patent describes methods for recovery of heat and removal of difficult gases from reaction products.
U.S. Pat. No. 5,660,123, to Tadmore, shows a procedure for batchwise destruction of various kinds of explosive materials by adding them to a combustion furnace holding a burning coal bed.
U.S. Pat. No. 5,727,481, to Voorhees, et al., describes a mobile armored incinerator suitable for burning explosive materials. The device has armored walls capable of withstanding internal explosions. It is made up of a variety of sections, a primary chamber for incineration, a secondary combustion chamber to burn exhaust from the primary chamber, and a trailer for providing transportation.
U.S. Pat. No. 5,881,654, to Fleming, et al., shows a device for pyrolizing explosives using a multizoned chamber having a remote combustion zone and an attached device for separating the various products of the combustion.
U.S. Pat. No. 5,907,818, to Hebisch, et al., shows a method of using a rotary cylindrical furnace and separating the resulting reaction products.
None of the devices or procedures shown in any of the documents discussed above are similar to the furnace and procedure for its use shown below.
SUMMARY OF THE INVENTION
This invention deals with a furnace for controllably detonating explosive materials, preferably small arms munitions, but also explosives, fireworks, and the like. The furnace itself preferably has several chambers. The first chamber is a heated detonation chamber defined by containment walls. At least a portion of the containment walls are resistant to detonation of the small caliber munitions, e.g., both the flying shrapnel and the percussive forces. The walls internal to the furnace need not be so resistant, but desirably are. The heated detonation chamber preferably has a first opening which is sealable or closable. This opening is for introducing undetonated small caliber munitions to the heated detonation chamber, preferably on a tray. The first or heated detonation chamber has a second opening in a separator wall for removing the detonated munitions from the heated chamber. The second opening preferably is also closable but need not be. The furnace has at least one movable covering for closing the first sealable opening into the heated detonation chamber. The furnace also includes a set of tray runners or tracks that extend generally from the first sealable opening to the second sealable opening and are adapted to slidably support trays containing the detonated or undetonated munitions from the first sealable opening through the second opening. They tray runners or tracks preferably then pass through the optional cooling chambers adjacent the detonation chamber. The furnace is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Small caliber munitions detonation furnace and process of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Small caliber munitions detonation furnace and process of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Small caliber munitions detonation furnace and process of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3302487

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.