SMA actuator with improved temperature control

Power plants – Motor operated by expansion and/or contraction of a unit of... – Mass is a solid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S528000

Reexamination Certificate

active

06981374

ABSTRACT:
A SMA actuator having rigid members and SMA wires, in which improved temperature control of the SMA wires of the actuator is provided by a heat sink, which may be the rigid members themselves, in close proximity to at least a central portion of the wires. Optionally, the heat sink is sized and placed such that the end portions of the wires where they are attached to the rigid members are not in close proximity to the heat sink. Where the heat sink is external, it optionally has a cooling element that acts passively as a heat sink during the heating cycle of the actuator and that acts as an active cooling element during the cooling cycle of the actuator. An SMA actuator having a desired contraction limit and a power supply circuit has a switch in the power supply circuit that is normally closed when the actuator is contracted to less than the desired contraction limit and is opened by the actuator reaching the desired contraction limit. This improved temperature control provides greater cooling of the SMA wires for a faster response and an extended working life of the actuator.

REFERENCES:
patent: 348841 (1886-09-01), Hainley
patent: 1658669 (1928-02-01), Cohn et al.
patent: 2518941 (1950-08-01), Satchwell et al.
patent: 2975307 (1961-03-01), Schroeder et al.
patent: 3452175 (1969-06-01), Wikes
patent: 3452309 (1969-06-01), Wikes
patent: 3641296 (1972-02-01), Schwarz
patent: 3725835 (1973-04-01), Hopkins et al.
patent: 3940935 (1976-03-01), Richardson et al.
patent: 4027953 (1977-06-01), Jacob
patent: 4150544 (1979-04-01), Pachter
patent: 4559512 (1985-12-01), Yaeger et al.
patent: 4579006 (1986-04-01), Hosoda et al.
patent: 4586335 (1986-05-01), Hosoda et al.
patent: 4626085 (1986-12-01), Suzuki
patent: 4742680 (1988-05-01), Mecca
patent: 4751821 (1988-06-01), Birchard
patent: 4806815 (1989-02-01), Honma
patent: 4811564 (1989-03-01), Palmer
patent: 4829767 (1989-05-01), Mecca
patent: 4841730 (1989-06-01), McDonald
patent: 4884557 (1989-12-01), Takehana et al.
patent: 4932210 (1990-06-01), Julien et al.
patent: 4977886 (1990-12-01), Takehana et al.
patent: 5014520 (1991-05-01), Orner et al.
patent: 5092781 (1992-03-01), Casciotti et al.
patent: 5127228 (1992-07-01), Swenson
patent: 5129753 (1992-07-01), Wesley et al.
patent: 5165897 (1992-11-01), Johnson
patent: 5166832 (1992-11-01), Zychowicz
patent: 5172551 (1992-12-01), Nakajima et al.
patent: 5235225 (1993-08-01), Colgate et al.
patent: 5312152 (1994-05-01), Woebkenberg, Jr. et al.
patent: 5344506 (1994-09-01), DeAngelis
patent: 5556370 (1996-09-01), Maynard
patent: 5563466 (1996-10-01), Rennex et al.
patent: 5618066 (1997-04-01), Fu-Hsiang
patent: 5685148 (1997-11-01), Robert
patent: 5747993 (1998-05-01), Jacobsen et al.
patent: 5763979 (1998-06-01), Mukherjee et al.
patent: 5770913 (1998-06-01), Mizzi
patent: 5771742 (1998-06-01), Bokaie et al.
patent: 5829253 (1998-11-01), Long et al.
patent: 5901554 (1999-05-01), Greschik
patent: 5917260 (1999-06-01), Garcia et al.
patent: 6019113 (2000-02-01), Allston et al.
patent: 6069420 (2000-05-01), Mizzi et al.
patent: 6126115 (2000-10-01), Carrier et al.
patent: 6164784 (2000-12-01), Butera et al.
patent: 6218762 (2001-04-01), Hill et al.
patent: 6326707 (2001-12-01), Gummin et al.
patent: 6327855 (2001-12-01), Hill et al.
patent: 6333583 (2001-12-01), Mahadevan et al.
patent: 6364496 (2002-04-01), Boddy et al.
patent: 6374608 (2002-04-01), Corris et al.
patent: 6404098 (2002-06-01), Kayama et al.
patent: 6434333 (2002-08-01), Tanaka et al.
patent: 6450064 (2002-09-01), Christiansen et al.
patent: 6574958 (2003-06-01), MacGregor
patent: 4209815 (1993-09-01), None
patent: 19509177 (1996-09-01), None
patent: 0147491 (1985-07-01), None
patent: 77 09117 (1978-10-01), None
patent: 2730766 (1996-08-01), None
patent: 2093589 (1982-09-01), None
patent: 2334046 (1999-08-01), None
patent: 07 274561 (1995-10-01), None
patent: 9605617 (1996-04-01), None
patent: 9607599 (1996-06-01), None
patent: WO 98/08355 (1998-02-01), None
patent: WO 01/12985 (2001-02-01), None
Aircraft Maneuverability, http://www.cs.ualberta.ca/˜database/MEMS/sma_mems/flap.html, last modified Aug. 17, 2001, printed Apr. 17, 2003, pp. 1-2.
Bokaie, Latch-Release Pin Puller with Shape-Memory Alloy Actuator, Lewis Research Center, http://www.nasatech.com/Briefs/Feb98/LEW16511.html, printed Apr. 17, 2003.
Bone Plates, http://www.cs.ualberta.ca/˜database/MEMS/sma_mems/bone.html, last modified Aug. 17, 2001, printed Apr. 17, 2003, pp. 1-2.
Glossary: Pseudo-elasticity (or super-elasticity), http://www.cs.ualberta.ca/˜database/MEMS/sma_mems/glossary.cgi, last modified Aug. 17, 2001, printed Apr. 17, 2003, pp. 1-2.
Glossary: Shape Memory effect, http://www.cs.ualberta.ca/˜database/MEMS/sma_mems/glossary.cgi, last modified Aug. 17, 2001, printed Apr. 17, 2003, pp. 1-2.
Grant et al., “Variable Structure Control of Shape Memory Alloy Actuators,”IEEE Control Systems17(3):80-88, 1997.
Hashimoto et al., “Application of Shape Memory Alloy to Robotic Actuators,”J. Robotic Systems2(1):3-25, 1985.
Hirose et al., “A new design of servo-actuators based on the shape memory effect,”Theory and Practice of Robots and Manipulators, 339-349, 1984.
Hodgson et al., Shape Memory Alloys, http://www.sma-inc.com/SMAPaper.html, 1999, printed Apr. 17, 2003, pp 1-2.
Ikuta et al., “Mathematical model and experimental verification . . . ,”IEEE Robotics and Automation4:103-108, 1991.
Ikuta et al., “Shape Memory Alloy Servo Actuator System with Electric Resistance Feedback and Application for Active Endoscope,”Proc. IEEE Int. Conf. On Robotics and Information427-430, 1988.
Ikuta, “Micro/Miniature Shape Memory Alloy Actuator,”IEEE Robotics and Automation3:2156-2161, 1990.
Kuribayashi, “A New Actuator of a Joint Mechanism Using TiNi Alloy Wire,”Int. J. Robotics4(4):47-58, 1986.
Mills JW, “Lukasiewicz' Insect: The Role of Continuous-Valued Logic in a Mobile Robot's Sensors, Control, and Locomotion,” inSiquito: Advanced Experiments with a Simple and Inexpensive RobotChapter 12, pp. 197-211, IEEE Computer Society Press, Los Alamitos, CA USA ISBN 0-8186-7408-3, 1993.
Otsuka et al., “Shape Memory Materials,” pp. 36-48, Cambridge University Press, Cambridge, England, 1998, ISBN 0-521-4487X.
Rediniotis et al., Development of a Shape-Memory-Alloy Actuated Biomimetic Hydrofoil, Journal fo Intelligent Material Systems and Structures, 13:35-49, 2002.
Robotic Muscles, http://www.cs.ualberta.ca/˜database/MEMS/sma_mems/muscle.html, last modified Aug. 17, 2001, printed Apr. 17, 2003, pp. 1-2.
Shape Memory Alloys, http://www.cs.ualberta.ca/˜database/MEMS/sma_mems/sma.html, last modified Aug. 17, 2001, printed Apr. 17, 2003, pp. 1-4.
Smith et al., Development of Shape Memory Alloy (SMA) Actuated Mechanisms for Spacecraft Release Applications, SSC99-XI-7, 13thAIAA/USU Conference on Small Satellites.
Technical Characteristics of FLEXINOL™ Actuator Wires, Dynalloy, Inc., printed on Feb. 26, 2001.
WPI Database XP002202662, “Shape memory metal actuator control device—has minimum and maximum detector to monitor state of actuator based on its minimum and maximum allowable impedance,” Oct. 20, 1995.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

SMA actuator with improved temperature control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with SMA actuator with improved temperature control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and SMA actuator with improved temperature control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3589837

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.