Sloped surface links for a conveyor belt

Conveyors: power-driven – Conveyor section – Endless conveyor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S699100

Reexamination Certificate

active

06761264

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to the field of conveyor belts and apparatuses for moving objects. More particularly, this invention relates to a chain drive which has a sloped surface onto which objects are reliably positioned.
BACKGROUND
Conveying systems are well known in the art and have any number of useful applications, such as the transportation of objects in various stages of manufacturing, storage, and shipping. Typical conveying systems utilize a flat conveying belt, generally formed of interconnected links, driven by motors that engage with the conveyor belt. Such conveying systems are commonly employed in the transportation of manufactured goods and articles. With these typical systems, the motor drives a toothed drive sprocket that engages with complimenting driving recesses or “dogs” formed on the conveyor belt. These drive units can be disposed in any number along the length of the conveyor belt. Such a drive unit and conveyor system is disclosed in U.S. Pat. No. 6,119,848 which is assigned to the assignee of the present invention, and is incorporated herein by reference in its entirety for all purposes.
Link type conveyor belts are sometimes designed in a knuckle/socket joint arrangement wherein one end of the link is a rounded knuckle and the opposite end is a socket formed by two extending edges. The knuckle of one link fits into the socket of a neighboring link. The knuckle is able to move in various directions within the socket, which allows for the conveyor system as a whole to curve and move.
The interconnected links typically have a platform member connected to or formed at the link's upper surface. The platform member is generally shaped to match the neighboring platform members on other links such that the links can turn while moving around curved sections of the conveying system, yet are also shaped such that the cracks and spaces formed between the links are minimized. The platform members can be connected to the links in several different ways. For instance, the platforms may have pegs extending therefrom which match corresponding slots on the links. Alternatively or additionally, the platforms can have snap springs which lock into place on corresponding sections of the links. Such a knuckle link with a platform surface member is disclosed in U.S. Pat. No. 6,209,716 which is owned by the assignee of the present invention and incorporated herein by reference in its entirety for all purposes.
Often times, it is the case that objects move or shift locations on the conveyor belt during transportation. This can be due to vibrations in the operation of the conveying system, centrifugal or tangential forces on the object when the conveying belt enters a curved section, or from simply being hit by other objects placed onto the conveyor belt. One way to prevent objects from moving on the surface of a conveyor belt is to apply a high friction surface element which keeps the objects in place. Such a technique is taught in U.S. Pat. No. 4,925,013 which is incorporated herein by reference in its entirety for all purposes.
Although the application of a friction surface element will minimize the aforementioned problems associated with the transport of goods, it may also create side-effect problems. For instance, an object placed on a high friction surface element will not move to a desired spot on the conveyor belt unless some other mechanical force is provided in which to move the object. Often times it is desired to specifically locate an object on a conveyor belt, and this cannot be accomplished if the object on a high friction surface is not initially placed in the desired location.
Further, it can also be the case in a particular application that a frictional or a high frictional surface is disfavored. This would be true if heavy objects were to be removed from the conveyer belt by use of a bar or other means. Having a heavy object on a high friction surface would necessitate the need to generate increased amounts of force to move the object from the conveyor belt, or would at least impede movement of the object from the belt. Additionally, it could be the case that a particular application requires the object to be positioned at a particular location on the conveyor belt surface. Having a frictional surface would again prevent or impede the movement of the object from one location on the surface platform of the conveyor belt to another.
Other problems associated with conveyor systems include vibration which causes objects to be rotated from one orientation to another. Ways used in the prior art to prevent this include adding guide rails to either side of the conveyor track to keep the object in place. These guide rails are stationary with respect to the moving conveyor track. Although effective, this solution can be impractical in certain parts of the conveying system in which spatial constraints do not allow for the instillation of guide rails.
The prior art provides a conveyor belt and means for impeding movement of an object on or off the conveyor belt. However, the prior art lacks a solution to locating an object at a particular point on a conveyor belt while still preventing the object from falling off of or moving on the surface platform during transport.
The present invention is at least an improvement upon conveyor used in the prior art, and provides a solution to the aforementioned problems associated with prior art conveying systems.
SUMMARY
Objects and advantageous of the present invention will be set forth in part in the following description, or may be obvious from the description, or may be learned from practice of the invention.
One embodiment of the present invention may be a conveyor belt for transporting objects including a plurality of body members. A plurality of surface platform members may be disposed at one side of the body members. An outside surface of the surface platform members slopes from a first location of higher elevation to a second location of lower elevation. A rail member may be located on the surface platform member proximate to the second point of lower elevation. Also, the surface platform member may be adapted to support an object that is transported by the conveyor belt.
Another aspect of the present invention may include an embodiment as previously discussed which further includes a friction gripping element that is located on the outside surface of the surface platform member. Additionally, this aspect of the invention may be further modified to produce an embodiment where the friction gripping element is located at the second location of lower elevation and is proximate to the rail member.
Another variation of the present invention exists in an embodiment as previously discussed where the outside surface of the surface platform member is inclined to cause the indicated sloping.
The present invention may also provide for a conveyor belt that includes in combination a set of interconnected links. The links are adapted to follow a curved pathway, the links include a plastic body with a leading nose portion and integral trailing set of bifurcated legs. The plastic body has sprocket receiving drive indentations disposed on opposite lateral sides of the body. The indentations are for engagement with laterally disposed sprockets which are used for moving the conveyor belt. A surface platform member is disposed on a plastic body. An outside surface of the surface platform member slopes from a first location of higher elevation to a second location of lower elevation. A rail member is located on the surface platform member and is located proximate to the second location of lower elevation. The surface platform member is adapted to support an object that is transported by the conveyor belt.
Another aspect of the present invention includes the embodiment as just discussed which further includes a friction gripping element that is located on the outside surface of the surface platform member. Additionally, another aspect of the present invention exists in this embodiment that further has the friction gri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sloped surface links for a conveyor belt does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sloped surface links for a conveyor belt, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sloped surface links for a conveyor belt will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3239704

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.