Slider-level microactuator for precise head positioning

Dynamic magnetic information storage or retrieval – Head mounting – For adjusting head position

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S234700

Reexamination Certificate

active

06683757

ABSTRACT:

INCORPORATION BY REFERENCE
The aforementioned Provisional Application No. 60/194,983 is hereby incorporated by reference.
BACKGROUND OF THE INVENTION
The present invention relates to a disc drive microactuator, and more particularly to a high resolution positioning mechanism implemented at the slider level for selectively moving a transducer portion of the slider radially with respect to circumferential data tracks of a rotatable disc.
The density of concentric data tracks on magnetic discs continues to increase (that is, the size of data tracks and radial spacing between data tracks are decreasing), requiring more precise radial positioning of the head. Conventionally, head positioning is accomplished by operating an actuator arm with a large-scale actuation motor, such as a voice coil motor, to radially position a head on a flexure at the end of the actuator arm. The large-scale motor lacks sufficient resolution to effectively accommodate high track-density discs. Thus, a high resolution head positioning mechanism, or microactuator, is necessary to accommodate the more densely spaced tracks.
One promising approach for high resolution head positioning involves employing a high resolution microactuator in addition to the conventional lower resolution actuator motor, thereby effecting head positioning through dual-stage actuation. Various microactuator designs have been considered to accomplish high resolution head positioning. Some designs are employed to deform disc drive components such as the actuator arm or the flexure in order to achieve minute displacements by bending. Other designs introduce a separate microactuator component at an interface between disc drive components. While many previous microactuator designs are able to deliver satisfactory micropositioning performance, their effectiveness is inherently limited by the sheer mass that the microactuators are designed to move. In order to move or bend one or more of the disc drive components, the microactuator employed must provide a relatively large amount of force, which requires either a complex or relatively massive microactuator motor mechanism.
A microactuator designed to move only a transducer-carrying portion of the slider with respect to the main portion of the slider is disclosed in U.S. application No. 09/007,007 which is assigned to Seagate Technology, Inc., the same assignee as the present invention. The present invention provides another microactuator for moving a transducer-carrying portion of the slider with high resolution and frequency response, in a configuration that is readily and inexpensively manufactured by thin-film processing techniques.
BRIEF SUMMARY OF THE INVENTION
The present invention is a microactuator built at the slider level for achieving high resolution positioning of a transducing head with respect to a track of a rotatable disc having a plurality of concentric tracks in a disc drive system. The slider includes a main body carried by a flexure. A stator portion extends from the main body, and a plurality of beams extend from the stator portion, the beams being flexible in a lateral direction. A rotor portion is connected to the stator portion by the plurality of beams, forming a gap between the stator portion and the rotor portion. The rotor portion carries the transducing head. A plurality of stator electrodes are formed on the stator portion, and a plurality of rotor electrodes are formed on the rotor portion to confront the stator electrodes across the gap. Control circuitry applies selected voltages to the stator electrodes and the rotor electrodes to create a force in the lateral direction for moving the rotor portion with respect to the stator portion of the slider, thereby finely positioning the transducing head.


REFERENCES:
patent: 3924268 (1975-12-01), McIntosh et al.
patent: 4374402 (1983-02-01), Blessom et al.
patent: 4605977 (1986-08-01), Matthews
patent: 4651242 (1987-03-01), Hirano et al.
patent: 4764829 (1988-08-01), Makino
patent: 4914725 (1990-04-01), Belser et al.
patent: 5021906 (1991-06-01), Chang et al.
patent: 5034828 (1991-07-01), Ananth et al.
patent: 5177652 (1993-01-01), Yamaguchi et al.
patent: 5189578 (1993-02-01), Mori et al.
patent: 5303105 (1994-04-01), Jorgenson
patent: 5325244 (1994-06-01), Takano et al.
patent: 5364742 (1994-11-01), Fan et al.
patent: 5375033 (1994-12-01), MacDonald
patent: 5521778 (1996-05-01), Boutaghou et al.
patent: 5657188 (1997-08-01), Jurgenson et al.
patent: 5745319 (1998-04-01), Takekado et al.
patent: 5764432 (1998-06-01), Kasahara
patent: 5764444 (1998-06-01), Imamura et al.
patent: 5781381 (1998-07-01), Koganezawa et al.
patent: 5796558 (1998-08-01), Hanrahan et al.
patent: 5801472 (1998-09-01), Wada et al.
patent: 5805375 (1998-09-01), Fan et al.
patent: 5856896 (1999-01-01), Berg et al.
patent: 5867347 (1999-02-01), Knight et al.
patent: 5896246 (1999-04-01), Budde et al.
patent: 5898541 (1999-04-01), Boutaghou et al.
patent: 5898544 (1999-04-01), Krinke et al.
patent: 5920441 (1999-07-01), Cunningham et al.
patent: 5920978 (1999-07-01), Koshikawa et al.
patent: 5936805 (1999-08-01), Imaino
patent: 5943189 (1999-08-01), Boutaghou et al.
patent: 5959808 (1999-09-01), Fan et al.
patent: 6249402 (2001-06-01), Katayama
patent: 6362542 (2002-03-01), Novotny
patent: 0 412 221 (1991-02-01), None
patent: 63-122069 (1988-05-01), None
patent: 02-263369 (1990-10-01), None
patent: 04-134681 (1992-05-01), None
patent: 04-368676 (1992-12-01), None
patent: 05-094682 (1993-04-01), None
patent: 06-020412 (1994-01-01), None
patent: 07-085621 (1995-03-01), None
“Silicon Micromachined Electromagnetic Microactuators for Rigid Disk Drives” by Tang et al,IEEE Transactions on Magnetics, vol. 31, No. 6, pp. 2964-2966 Nov. 1995.
“Magnetic Recording Head Positioning at Very High Track Densities Using a Microactuator-Based, Two-Stage Servo System” by Fan et al.,IEEE Transactions on Industrial Electronics, vol. 42, No. 3, pp. 222-233 Jun. 1995.
“A Flexural Piggyback Milli-Actuator for Over 5 Gbit/in2Density Magnetic Recording” by Koganezawa et al,IEEE Transactions on Magnetics, vol. 32, No. 5, pp. 3908-3910 Sep. 1996.
“Transverse Mode Electrostatic Microactuator for MEMS-Based HDD Slider” by Imamura et al,IEEEpp. 216-221 1996.
“An Experiment for Head Positioning System Using Submicron Track-width GMR Head” by Yoshikawa et al.,IEEE Transactions on Magnetics, vol. 32, No. 5, pp. 3905-3907 Sep. 1996.
“Micro Electrostatic Actuators in Dual-Stage Disk Drives with High Track Density” by Tang et al.,IEEE Transactions on Magnetics, vol. 32, No. 5, pp. 3851-3853 Sep. 1996.
“Piezoelectric Microactuator Compensating for Off-Track Errors in Magnetic Disk Drives” by Imamura et al,ASME Advance Information Storage Systems, vol. 5, pp 119-125, 1993.
“A Dual-Stage Magnetic Disk Drive Actuator Using a Piezoelectric Device for a High Track Density” by Mori et al.,IEEE Transactions on Magnetics, vol. 27, No. 6, pp. 5298-5300 Nov. 1991.
“Dynamic Loading Criteria for 3-1/2 Inch Inline HDD Using Multilayer Piezoelectric Load/Unload Mechanism” by Kajitani et al.,IEEE Transactions on Magnetics, vol. 27, No. 6, pp. 5079-5081 Nov. 1991.
“Design, Fabrication, and Testing of Silicon Microgimbals for Super-Compact Rigid Disk Drives” by Temesvary et al.,Journal of Microelectromechanical Systems, vol. 4, No. 1, pp. 18-27 Mar. 1995.
Application No. 09/007,007, Filed Jan. 14, 1998, Entitled: Piezoelectric Microactuator for Precise Head Positioning, Inventor: Vlad Joseph Novotny, Attorney Docket No.: 169.12-0345.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Slider-level microactuator for precise head positioning does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Slider-level microactuator for precise head positioning, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Slider-level microactuator for precise head positioning will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3218416

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.