Drug – bio-affecting and body treating compositions – Solid synthetic organic polymer as designated organic active... – Ion exchange resin
Reexamination Certificate
1996-10-01
2001-10-23
Page, Thurman K. (Department: 1615)
Drug, bio-affecting and body treating compositions
Solid synthetic organic polymer as designated organic active...
Ion exchange resin
C424S648000, C424S649000
Reexamination Certificate
active
06306384
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a novel cosmetic composition and treatment. More specifically, the invention relates to a skin treatment which provides a beneficial mild electrical current across the skin, whereby skin quality is improved.
BACKGROUND OF THE INVENTION
It has long been recognized that there is a normal transcutaneous electric potential associated with mammalian skin (see, e.g., Robert Edelberg, in, The Biophysical Properties of the Skin, Harry Elden(ed.), Chapter 15, Wiley Interscience, 1971). This potential is to a great extent influenced by the presence of sweat glands and hair, and thus the strength of the potential may differ both spatially and temporally on the skin. However, even in nonglandular areas of the skin, there is a fairly strong, measurable current produced across the epidermis, in essence a skin battery. Although most measurements have been conducted on non-human mammals, considerable evidence exists for the same type of battery to exist on human skin as well(Barker et al., Am. J. Physiol. 242: R358-R366, 1982). Such batteries have been known to exist in amphibians, where they apparently serve a function in sodium uptake and appendage regeneration. However, their purpose in a nonaquatic vertebrate was not readily apparent. Based on observations of fairly strong voltage gradients at the margins of wounds, Barker et al. and others have suggested that in mammals the skin currents may be important in the process of wound healing.
Further evidence of the importance of electrical currents in the maintenance of healthy skin has been shown in the successful use of electrotherapy in treatment of skin ulcers. For example, Carley and Wainapel(Arch. Phys. Med. Rehabil. 66: 443-446, 1985 have shown that treatment of indolent ulcers with low density direct current significantly increased the healing rate of those treated individuals relative to individuals treated with conventional therapy, with a concomitant reduction in pain and discomfort in those treated with electrotherapy. Similarly, Biedebach, noting the “wound current” generated in damaged tissue in and also summarizing the overwhelming evidence of the healing properties of electrotherapy for ulcer treatment, proposed that enhancement of the natural current may be useful in accelerating the healing process.
There appears to be no doubt that the maintenance of an electric current on the skin is associated with the continued well-being of undamaged skin, and that application of a current to injured skin can be highly beneficial to the healing process of damaged skin. In addition to the reported treatment of ulcers, there are a number of other skin conditions involving irritation or inflammation which could also potentially benefit from preventive and/or therapeutic application of a low intensity current. However, the means for delivery of healing current to skin reported in the medical literature typically involve the use of machinery and monitoring which would be prohibitively expensive and complicated for the treatment of less serious skin disorders. It therefore would be desirable to have available a less intrusive, more cost-effective method of current delivery to the skin, which method could then benefit less life-threatening, but nonetheless painful and irritating, chronic and acute skin conditions, or simply to maintain the overall health of the skin. The present invention provides just such a method, which can be used routinely by the afflicted individual in an unmonitored home environment.
SUMMARY OF THE INVENTION
The present invention relates to a method for preventing or treating skin damage which comprises applying to the skin an effective amount of a cosmetically or pharmaceutically acceptable compound capable of acting as an electron donor, simultaneously or substantially simultaneously with the application of a cosmetically or pharmaceutically acceptable compound capable of acting as an electron acceptor, whereby an exchange of electrons between the electron donor and electron acceptor results in generation of an electrical current on the skin. The invention also provides a unit package comprising, in separate containers or compartments, a cosmetically or pharmaceutically acceptable carrier comprising a compound capable of acting as an electron donor, and a cosmetically or pharmaceutically acceptable carrier comprising a compound capable of acting as an electron acceptor. In a preferred embodiment, the carrier is one which is capable of facilitating the transfer of electrons between the electron donor and acceptor.
DETAILED DESCRIPTION OF THE INVENTION
Application of the composition(s) of the invention in the present method essentially creates a battery on the skin. A standard battery, outside the present context, is defined as one or more electronically connected electrochemical cells having terminal contacts to produce electrical energy. Briefly, in all battery systems, an oxidizer, or electron acceptor, and fuel, or electron donor, react to form products resulting in direct electron transfer and release or absorption of energy or the performance of work. Most batteries are porous structures in which an interconnected matrix of solid particles, consisting of both non-conductive and conductive materials, is filled with an electrolyte. The electrolyte acts as a conduit in the transfer of electrons.
The present method and compositions operate on the skin in much the same way as a standard battery does in a car or in a portable radio. Like a traditional battery, one component of the two part composition acts as a negative electrode that releases electrons into an external circuit; a second component acts as a positive electrode that gains electrons from an external circuit. Each component is maintained in a matrix which is capable of acting as an electrolyte, i.e., to facilitate the electron transfer between anode and cathode.
Like a traditional battery, the active materials in the two components are selected for their ability to respectively, either donate or accept electrons. In the present method and compositions, the active materials must of course be chosen from among cosmetically or pharmaceutically acceptable materials. However, given this guideline, the first electrode is usually a metallic element, or an oxide or salt thereof, with a positive oxidation potential, i.e., capable of giving up electrons. Examples of such metallic elements include, but are not limited to, copper or iron. The second electrode is often a metal oxide, hydroxide, halide or sulfide, for example, of gold, silver, platinum or palladium, or appropriate ions thereof. Iron may actually act as either electrode depending on the identity of the other electrode. As used in the present specification and claims, the term “effective amount” refers to the amount of one electrode component which is sufficient to generate a measurable potential on the skin when combined with an effective amount of a properly selected opposite electrode component. In a typical composition, as applied on the skin, the individual electrode components are preferably present in an amount of from 0.0001-20% by weight of the formulation.
The matrix in which the components are applied can be any standard cosmetically or pharmaceutically acceptable carrier. The term “pharmaceutically or cosmetically acceptable carrier” refers to a carrier, for either pharmaceutical or cosmetic use, which carrier delivers the active components to the intended target and which will not cause harm to humans or other recipient organisms. As used herein, “pharmaceutical” or “cosmetic” will be understood to encompass both human and animal pharmaceuticals or cosmetics. The battery compositions can be prepared in any form convenient for topical application to the skin. Such forms include, but are not limited to gels, creams, dispersions, emulsions(water-in-oil or oil-in-water), suspensions, lotions, foams, mousses and the like.
The nature of the carrier can be determined in accordance with the desired method of application and/or packaging. For exa
Cioca Gheorghe
Gubernick Joseph
Lahanas Konstantinos M.
Toma Daniela
E-L Management Corp.
Fubara Blessing
Lowney, Esq. Karen A.
Page Thurman K.
LandOfFree
Skin battery cosmetic composition does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Skin battery cosmetic composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Skin battery cosmetic composition will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2591051