Sintered material for a magnetic track brake

Brakes – Operators – Electric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06648108

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a sintered material for a magnetic track brake, more particularly to an eddy current brake and/or magnetic track brake according to the preamble of claim 1, a magnetic track brake as well as a pole shoe for a magnetic track brake comprising such a sintered material.
2. Description of the Related Art
In magnetic track brakes according to the state of the art, preferably St37 steel was employed as friction material. What proved disadvantageous though in the use of a St37 friction layer was that build-up deposits occurred increasingly, which severely reduced the braking power of the brake. In order to restore the same, it was necessary to remove the build-up deposits by hand, which caused high maintenance costs. The employment of GGG40 spherulitic graphite iron did, it is true, result in fewer deposits forming, however, with friction layers of that type it was only possible to apply weak braking forces.
A further problem with magnetic track brakes according to the state of the art concerned the connection of the friction material to the carrier member or the basic member according to the state of the art, this connection is established by sintering, bonding or by welding. While the sintered connection broke open frequently already when weak shearing forces were applied, the bonded connections were subject to the disadvantage that they called for intermediate layers, in whose transition areas to the friction material block, crack formations and/or corrosions occurred so that an underfilm corrosion of the friction material block may take place gradually at one side which could lead to an impairment of the braking effect and—in an extreme case—to a failure of the brake lining. The bonding of the friction material to the carrier or supporting plate does, when manufacturing the brake lining by the thermal treatment of the bonding material, also calls for relatively long application times, which result in low production figures. A shortening of the application times of the thermal treatment of the bonding material is only possible by accepting an inadequate adhesive connection. Often the roughness of the surfaces to be bonded is also insufficient for making an adequate adhesion possible. That is why it has already been proposed in the DE-U1-B2 01 404, to provide the carrier plate on the side carrying the friction material block with a sinter-fused mounting bed of individual form-fitting shaped members with undercuts, recesses or suchlike, upon which the pressed-on friction material in the form of blocks is attached while filling in the undercuts, recesses or the like of the individual shaped members. However, in practical operation it has been shown that the adhesion continues to be inadequate since mechanical forces as well as occurring vibrations lead to a breaking up of the connection. The microscopically small shaped members forming a rough surface area are moreover comprised of a material other than the remaining mounting bed material, for which reason, by and large, a bed of homogeneous composition is formed, which, when subjected to loads or forces, tends to form cracks or to break apart. To this is added the circumstance that, on the connection point with a mounting bed, in lieu of one connection surface, two connection surfaces have to be provided, viz. the area of transition from the friction material body to the mounting bed and from the mounting bed to the carrier member.
From the EP-A-0 581 988, a brake block and a method for its fabrication as well as a magnetic track brake for road and rail vehicles, more particularly also for rail vehicles traveling at high or higher speeds is known. In order to render the connection of a carrier member on a friction material block for a brake block for road and rail vehicles safer, it is proposed here that the block of friction material be non- positively and/or form-fittingly embraced on several adjacent surface area portions not located in one plane by parts of the cast carrier member. This is achieved in that the finished sintered member is placed in a casting mold and the carrier member material is cast around the same. The brake block according to the EP-A-0 581 988 is characterized in that at least the friction material block is non-positively and form-fittingly encompassed on several adjacent surface area portions not located in one plane by parts of the cast carrier member. Thus not merely a connection of two adjoining, possibly roughened, surface areas is provided, but a connection which embraces the friction material block on the lateral surface portions or on all sides. The geometrically simplest connection, by way of example, resides in that the square brake block, on one of its front surfaces and on the lateral surfaces adjacent hereto, is embraced in its entirety or in part by the cast carrier member. In such a case, the lateral embracing pieces serve as supporting areas for the absorption of shearing forces or, by way of amplification, it is in this case also proposed to provide the friction material block and the cast carrier member on one front surface and/or on two oppositely located lateral surfaces with contourings in the form of elongated protuberances which, appropriately configured, intermesh and provide a natural positive locking of the cast carrier member around the friction material block.
SUMMARY OF THE INVENTION
It is the technical problem of the present invention to state a friction material for a magnetic track brake which is distinguished by a negligible tendency to forming build—up deposits as well as a track brake or a pole shoe for a magnetic track brake, which permits adequate application times and with which sufficiently powerful braking forces are generated.
This technical problem is resolved by means of a sintered material according to the claim 1 as well as by a magnetic track brake having a magnetic flux-carrying area and/or a magnetic flux-separating area, at least in part, in the form of a friction material that is a sintered material comprising a proportion of pulverized wear inhibitor and/or a proportion of powder forming a protective layer, in which case the invention also includes a pole shoe for a magnetic track brake according to claim 43. The invention consequently consists in that a sintered material is made available as friction material for a pole shoe, a pole shoe area or pole shoe friction areas for a magnetic track brake comprising at least
a proportion of pulverized wear inhibitor and/or
a proportion of powder forming a protective layer.
As pulverized wear inhibitor, by preference one or combinations of several of the following substances are employed: Al2O3, ZrO2, Al2TiO5, Y2O3, SiC, Si3N4, WC, Cr3C2, TiC.
The powder forming the protective layer is preferably selected from one of the following substances: Spherulitic graphic iron, graphite, iron sulfide, manganese sulfide, lead, molybdenum sulfite.
In a preferred embodiment, the sintered material may also possess a proportion of magnetically conductive powder, by way of example, iron powder.
A particularly wear-resistant composition of the sinter material as friction material is:
 80% to 99%
magnetically conductive material and
optionally non-conductive material;
0.5% to 5%
molybdenum sulfite
0.5% to 5%
carbon
0.5% to 2%
silicon carbide.
If the sintered material in its first embodiment comprises 80% to 99% of a magnetically conductive material, in that case the same possesses a proportion of iron. If the sintered material comprises a magnetically non-conductive material, then the same possesses preferably several or combinations of the following substances:
tin, copper, zinc, nickel, aluminum or alloys of these substances, by way of example, bronze, brass, nickel silver.
According to a further aspect of the invention, it is intended to provide a low-maintenance track brake, in which no build-up deposits occur or merely in a very thin and small form, i.e. negligible deposits and which, over and above that, allows application times that are appro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sintered material for a magnetic track brake does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sintered material for a magnetic track brake, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sintered material for a magnetic track brake will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3113629

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.