Single wire radio to charger communications method

Electricity: battery or capacitor charging or discharging – Means to identify cell or battery type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C320S125000

Reexamination Certificate

active

06300743

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to chargers for communications devices. More specifically, this invention relates to a single wire communication method for transmission of charging status from a phone to a charger.
BACKGROUND
In the past, cellular phones have been used as communication devices that transmit analog acoustic signals, i.e. voice and sound, from a handset to a cellular network. When a person speaks into the phone, the sound waves generated by the mouth are received by a microphone and converted into analog electrical signals, or waves. These electrical waves are then transmitted from the phone to a cellular tower, where they pass through the cellular network and are then routed to the recipient's phone. The electrical waves are then converted back into sound through a loud speaker. In this fashion, analog phones provide effective, reliable transmission of sound.
The advent of digital phones brought about a change in the transmission process. In a digital phone, the sound waves received by the microphone are encoded into a specific series of zeroes and ones called a “digital word”. This encoding takes place in an “analog to digital” converter. The zeroes and ones are then sent to the cellular network in the form of radio waves, where they again pass through the tower and are sent to the recipient's phone. There they are decoded by a “digital to analog” converter. They then are converted to sound through the loud speaker.
Digital phones offer several advantages over their analog counterparts. First, digital signals are virtually immune to static noise. Static takes the form of analog waves that look to the phone like normal phone calls. In a digital phone, however, the phone call looks very different from the static. The phone is thus able to filter out the noise.
Second, cellular networks can fit many more digital signals into a wire than analog signals. Again, due to the sophisticated filtering in digital systems, a phone can easily distinguish it's digital call from that intended for another phone.
Finally, as computers also communicate with ones and zeroes, digital phones are able to receive more than just sound. For example, digital phones can receive pages, caller identification data, internet information, text, pictures and other information. The i1000 phone manufactured by Motorola, for instance, can receive text pages, voice mail, and caller identification data in addition to phone calls!
While these additional features of digital phones are great for the end user, they present some major obstacles for the battery charger designer. For example, chargers for some phones include charging algorithms which ramp and taper the voltage and current to charge a battery. Chargers for other phones, however, supply basic voltage to the phone, while charging circuitry inside the phone ramps and tapers the voltage and current. For these phones, where the charging circuitry located inside the phone, the phone must communicate it's charging state, i.e. one quarter charged, half charged, etc., to the charger. This information is needed by the charger because the charger lights an indicator depending -upon the charge state. For example, a green light on the charger might indicate a fully charged battery while a red light might indicate a charging battery.
Traditionally, this communication occurred through a data connector located on the bottom of the phone. When the phone was in the charger, the charger data connector mated with the phone data connector. The state of charge was communicated digitally across this interface. With the advent of digital communication features, many phones now come with accessories like global positioning systems that connect to the phone's data connector. If such an accessory is connected to the phone when the phone is inserted in the charger, the charger can no longer use this port for communicating charging information.
There is thus a need for an improved, simplified charging status indication means in telephone/charger systems.
SUMMARY OF THE INVENTION
This invention is a method by which the charging status of a battery can be transmitted from a microprocessor in a phone or radio to a charger across a single wire interface. The communication is accomplished by modulating the duty cycle of logic “high” signals across a predetermined pulse period. The pulse period is subdivided into N increments. By way of an example, if N=10 and the pulse width is 1 millisecond, each {fraction (1/10)} of a millisecond is one division. A word then corresponds to a specific relationship of the number of divisions that the line is high, versus the number of divisions the lines is low. In other words, when the logic signal on the one wire interface is high for one-tenth of a pulse, this may correspond to a battery state of 0% to 30% charged, which should cause a red LED on a charger to illuminate. In another case, if the line is high for two-tenths of a pulse, this may tell the charger that the battery is between 31% and 60% charged, causing the charger to light a yellow LED. This invention is for use in systems where the charger acts as a slave to a phone or radio that has its own charging circuitry.


REFERENCES:
patent: 5895440 (1999-04-01), Proctor et al.
patent: 5905358 (1999-05-01), Fernandez et al.
patent: 6031353 (2000-02-01), Banyas et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Single wire radio to charger communications method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Single wire radio to charger communications method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Single wire radio to charger communications method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2597118

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.