Single-transverse-mode laser diode with multi-mode waveguide...

Coherent light generators – Particular active media – Semiconductor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S045013

Reexamination Certificate

active

06445722

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a laser diode and a manufacturing method of the same, and more particularly to a single-mode laser diode comprising a light waveguide including a multi-mode waveguide region and a manufacturing method of the same.
2. Description of the Related Art
Opto-electronics technologies have been utilized and developed in various fields such as the information input/output technologies typified by compact discs hereinafter referred to as CDs) and the optical communication technologies using optical fibers, and so on. Laser diodes, (hereinafter referred to as LDs), have been developed as devices which support these opto-electronics technologies. For example, LDs of near infrared band or visible band are used for CDs and LDs of long wave band are used for optical communications. As described above, various kinds of LDs contribute to the opto-electronics technologies.
There are various structures of LDs. Among waveguide type LDs, the waveguide type LDs having a waveguide which obtains a so-called single-transverse-mode light are generally used. Concerning CDs, in order to increase the capacity of information, it is important to increase the recording density. And it is necessary to use single-transverse-mode light to increase the recording density. Moreover, with regard to optical communications, there is a problem that the multi-mode signal light is not suitable for long distance communication because of the influence of multi-mode dispersions. For this reason, a waveguide type LD which emits single-transverse-mode light is generally used in both the field of the information input/output and the field of the optical communications.
In order to obtain this single-transverse-mode light, from the waveguide of the LDs, a single-transverse-mode waveguide which has a narrow waveguide width to cut off the multi-mode light is generally used. More concretely, in the single-transverse-mode waveguide, the width of the active layer in the waveguide of the LD is limited in the range of about 2 to 4 &mgr;m. Therefore, an electric current capable of being injected into the LD is limited to a relatively small value so that there is a limitation to an output of light.
In order to allow a high injection electric current and to enhance a saturation light output level, one of the easiest ways is to widen the waveguide width of the LD. However, as described above, since there is the limitation that the waveguide width must be relatively narrow in order to realize the single-transverse-mode waveguide, a technological restriction for achieving a high output performance of the LDs exists.
In order to solve the foregoing problems, various kinds of methods have been proposed. A mode-filter integrated multi-mode LD is reported in IEEE Journal of Quantum Electronics Vol. QE-23 No.6, 1987, pages 730-737, by Patrick Vanwikelberge et. al. ( hereinafter referred to as the first prior art). In this multi-mode LD, a main light excitation region is constituted by a multi-mode LD having a wide waveguide width, resulting in an increase in a saturation light output performance.
As another way, a flare-shaped LD is reported in Electronics Letters Vol. 32, No. 24, 1996, pages 2277-2279, by M. Sagawa et. al. ( hereinafter referred to as the second prior art This LD has a structure in which a waveguide width is as narrow as the width of the single-transverse-mode waveguide in its one end and the waveguide width becomes broader toward its other end showing a flare shape. Since the waveguide width in its broader end is broader than conventional single-transverse-mode waveguides, the light output performance is increased. In addition, since the mode of the output light is controlled by the single-transverse-mode waveguide region at the narrow end, the foregoing LD can be constructed such that it can keep the single-transverse-mode light in spite of the broader width in its other end, by forming it to the desirable flare shape.
Moreover, as another way, a Phase-locked LD array is reported in Applied Physics Letters Vol. 60, No. 6, 1992, pages 668-670, by L. J. Mawst et. al. ( hereinafter referred to as the third prior art). This LD array has a plurality of LDs, for example, 20 LDs, which are integrated by arranging them perpendicular to the direction of the its light waveguide at certain intervals and the LDs are allowed to resonate with each other, thereby finally achieving a high single-transverse-mode output.
In the first prior art, though the multi-mode waveguide region excites not only the single-transverse-mode light but also primary and secondary lights, the single-transverse-mode light can be obtained by removing the primary and secondary lights by mode filters. Since light energies of the primary and secondary lights do not contribute to the single-transverse-mode light output of the LD, there is a problem that an electric/light conversion efficiency is low compared to the conventional single-transverse-mode LD.
From the view point of manufacturing the LD, the second prior art involves a disadvantage of difficulty in forming a desirable flare shape. Specifically, in the case that the length of the LD involves a little error or the broader end of the waveguide is not formed exactly according to the design due to an error in manufacturing, the flare shape is no longer the most desirable one. In this case, the desired characteristics of the LD can not be obtained.
The third prior art has a complicated structure and involves a difficulty in manufacturing so that it is difficult to manufacture the LD array with a high yield. Moreover, in the third prior art, a structural tolerance to satisfy the resonance conditions is severe, that is, the allowable range of the error of the third prior art is narrow, so that it is difficult to manufacture the LD array with a high reproducibility.
As described above, the allowable injection electric current into the LD having a narrow waveguide width to obtain the single-transverse-mode light, which has been heretofore used in general, is limited to a small quantity, so that there is a problem of limitation of the output of the LD. The three prior arts that have been proposed in order to solve these problems involve the problems that it is difficult to obtain the high electric/light conversion efficiency, the LD can not be manufactured with a high reproducibility, the manufacturing tolerance is severe, and the structures are complicated.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a LD which has a simple structure which can be manufactured easily and is capable of obtaining a single-transverse-mode light with a high power output, and a manufacturing method of the same.
The present invention features that a LD for emitting single-transverse-mode light comprises a light waveguide including a multi-mode waveguide region. The multi-mode waveguide region should preferably be a 1×1 multi-mode interference light waveguide. It is preferable that a light waveguide structure consist of a multi-mode waveguide region and a pair of single-transverse-mode waveguide regions connected to both ends of the multi-mode waveguide region. It is preferable that the width of the multi-mode waveguide region be wider than that of the single-transverse-mode waveguide region. When the multi-mode waveguide region is formed, it is preferable that its width W
1
be set to any value, the length L corresponding to the width W
1
obtained by a multi-mode interference theory, and then a multi-mode waveguide region having the length L and the width W
1
formed.
With such structure, the LD of the present invention comprises a multi-mode waveguide having a broad width as a main waveguide structure so that the LD of the present invention can achieve an increase in a light output, a low threshold electric current density and a high electric/light conversion efficiency. At the same time, the LD of the present invention can realize a single-transverse-mode output light. Moreover, the LD of the present invention h

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Single-transverse-mode laser diode with multi-mode waveguide... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Single-transverse-mode laser diode with multi-mode waveguide..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Single-transverse-mode laser diode with multi-mode waveguide... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2886366

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.