Single riser/single capillary blood viscometer using mass...

Measuring and testing – Liquid analysis or analysis of the suspension of solids in a... – Viscosity

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S078380, C424S009520, C435S239000, C514S723000, C600S573000

Reexamination Certificate

active

06732573

ABSTRACT:

BACKGROUND OF THE INVENTION
A capillary viscometer is commonly used because of its inherent features such as simplicity, accuracy, similarity to process flows like extrusion dies, no free surface, etc. Viscous flow in capillary viscometry is firmly established both theoretically and experimentally. C. W. Macosko,
Rheology: Principles, Measurements, and Applications
(VCH, 1993). In fact, the capillary viscometer was the first viscometer and this device remains the most common for measuring viscosity for polymer solutions and other non-Newtonian fluids. However, most existing capillary viscometers produce viscosity measurement a shear rate at a time. In the case of Newtonian fluids the observation of the rate of flow at a single pressure drop is sufficient to define the flow behavior. However, in the case of non-Newtonian fluids, viscosity measurements need to be performed over a range of shear rates. In order to measure viscosity over a range of shear rates, it is necessary to repeat the measurement by varying either the driving pressure head or the capillary tube diameter, which leads to a time-consuming measurement requiring intensive labor. Hence, these methods are not suited for measuring the rheology of polymer fluids that may exhibit shear-dependent viscosities. Furthermore, application of such techniques often requires relatively large volumes of the test fluids. Therefore, there has been a need to develop a simple and labor-free viscometer which can measure the viscosity of fluids over shear rates at a time.
In U.S. Pat. No. 6,019,735 (Kensey et al.) and U.S. Pat. No. 6,077,234 (Kensey et al.), which are assigned to the same Assignee, namely Visco Technologies, Inc., of the present invention, there is disclosed a scanning-capillary-tube viscometer for measuring the viscosity of a fluid, e.g., circulating blood of a living being. Among other things, this scanning capillary tube viscometer discloses an apparatus that monitors the changing height of a column of fluid versus time in a riser that is in fluid communication with a living being's circulating blood. A further improvement of this type of scanning capillary tube viscometer is disclosed in application Ser. No. 09/439,735 entitled DUAL RISER/SINGLE CAPILLARY VISCOMETER, which is assigned to the same Assignee as the present invention, namely, Visco Technologies, Inc. and whose entire disclosure is incorporated by reference herein. In that application, a U-shaped tube structure is utilized that generates a falling and rising column of test fluid that is driven by a decreasing pressure differential for moving these columns of fluid through a plurality of shear rates, which is necessary for non-Newtonian fluid (e.g., blood) viscosity determinations. Such an apparatus can produce viscosity data in a low shear range (e.g., approximately 0.02 s
−1
).
However, there is a need for an alternative mechanism of monitoring the changing column of fluid over time, such as detecting the changing mass of the column of fluid, as set forth in the present application. The key principle of the mass-detection-capillary viscometer is that both flow rate and pressure drop at a capillary tube can be determined by a single measurement of collected fluid mass variation with time using a load cell. Thus, there also remains a need to develop a viscosity determination in a quasi-steady capillary flow and to measure the viscosity of non-Newtonian fluids (e.g., polymer solutions, circulating blood of a living being, etc.) over a range of shear rates.
SUMMARY OF THE INVENTION
An apparatus for determining the viscosity of the circulating blood of a living being over plural shear rates using a decreasing pressure differential. The apparatus comprises: a lumen (e.g., a riser tube) being positioned at an angle to a horizontal reference greater than zero degrees, wherein the lumen comprises a first end and a second end and wherein the first end is exposed to atmospheric pressure and wherein the lumen comprises a first known dimension (e.g., the diameter of the lumen); a flow restrictor (e.g., a capillary tube) having an inlet and an outlet wherein the outlet is arranged to deliver any blood that passes therethrough to a collector, and wherein the flow restrictor includes some known dimensions (e.g., the length and diameter of the flow restrictor); a valve coupled to the vascular system of the living being at a first port and wherein the valve comprises a second port coupled to the second end and a third port is coupled to the inlet; a sensor for detecting the movement of the blood over time (e.g., a mass detector, a column level detector, etc.) through the apparatus and wherein the sensor generates data relating to the movement of the blood over time; a processor, the valve to create a column of blood in the first lumen and the flow restrictor and to establish a pressure differential between the first end and the outlet, and wherein the column of blood moves through the lumen and the flow restrictor at a first shear rate caused by the pressure differential and wherein the movement of the column of blood causes the pressure differential to decrease from the first shear rate for generating the plural shear rates; and wherein the processor calculates the viscosity of the blood based on the data relating to the movement of the column of blood over time, the first known dimension of the lumen and the some known dimensions of the flow restrictor.
A method for determining the viscosity of the circulating blood of a living being over plural shear rates caused by a decreasing pressure differential. The method comprises the steps of: (a) providing a lumen having a first end and a second end and positioned at an angle to a horizontal reference greater than zero degrees, and wherein the lumen has a first known dimension (e.g., the diameter of the lumen) and wherein the first end is exposed to atmospheric pressure; (b) diverting a portion of the circulating blood into the lumen through the second end to form a column of blood therein; (c) coupling an inlet of a flow restrictor to the second end of the lumen to establish a pressure differential between the first end and the outlet and wherein the flow restrictor has an outlet that is arranged to deliver any blood that passes therethrough to a collector and wherein the flow restrictor has some known dimensions (e.g., the length and the diameter of the flow restrictor); (d) controlling the column of blood to form a continuous column of blood in the lumen and the flow restrictor, and wherein the column of blood moves through the lumen and the flow restrictor at a first shear rate caused by the pressure differential and wherein the movement of the column of blood causes the pressure differential to decrease from the first shear rate for generating the plural shear rates; (e) providing a sensor for detecting the movement of the column of blood over time (e.g., a mass detector, a column level detector, etc.) as the column of blood moves and passes from the outlet into the collector while maintaining the outlet submerged in blood that has collected in the collector, and wherein the sensor generates data regarding the movement; and (f) calculating the viscosity of the blood based on the generated data, the first known dimension and the some known dimensions.
An apparatus for determining the viscosity of the circulating blood of a living being over plural shear rates using a decreasing pressure differential. The apparatus comprises: a lumen (e.g., a riser tube) being positioned at an angle to a horizontal reference greater than zero degrees, and wherein the lumen comprises a first end and a second end and wherein the lumen also comprises a first known dimension (e.g., the diameter of the lumen); a flow restrictor (e.g, a capillary tube) having an inlet and an outlet wherein the outlet is arranged to deliver any blood that passes therethrough to a collector and wherein the inlet is coupled to the second end and wherein the flow restrictor includes some known dimensions (e.g., the length and diameter of the flow r

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Single riser/single capillary blood viscometer using mass... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Single riser/single capillary blood viscometer using mass..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Single riser/single capillary blood viscometer using mass... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3206236

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.