Electricity: motive power systems – With particular motor-driven load device
Reexamination Certificate
2000-02-09
2001-04-03
Masih, Karen (Department: 2837)
Electricity: motive power systems
With particular motor-driven load device
C089S033020, C089S033140
Reexamination Certificate
active
06211630
ABSTRACT:
TECHNICAL FIELD
This invention relates to air conditioning and ventilation systems in general, and specifically to a system that can drive two separate film belts to substantially differing locations with a single drive motor.
BACKGROUND OF THE INVENTION
Flexible, rolling film belts are finding increasing acceptance as an alternative to bulkier, and non linear, swinging doors. A typical system uses a belt with one or more apertures that rolls back and forth from a powered wind up roller onto a passive, take up roller. Any fraction of the belt aperture can be aligned with a duct or frame opening to achieve a corresponding degree of air flow. A flat belt is also inherently more compact than a swinging door.
Newer automotive HVAC systems often provide for multi zone (individual occupant) air flow rate or temperature control, or both. To achieve independent control with a film belt system, separate film belts capable of at least substantially independent movement are required. Typically, this would also require a separate drive motor to turn the wind up roller of each belt. The motor is one of the more expensive and space consuming elements of the system.
SUMMARY OF THE INVENTION
The subject invention provides a means for driving two separate film belts with a single motor. In the preferred embodiment disclosed, first and second apertured belts are arranged side by side and substantially co planar, with first and second wind up rollers arranged on a common central axis. The two wind up rollers run on separate shafts, with axially spaced inboard ends. Each wind up roller inboard end has an axially extending, narrow drive lug thereon, which rotates about the central axis, but there is no direct overlap between the drive lugs, and no direct interconnection between the wind up rollers' in board ends. Instead, in the axial space between them, a rotation transmission mechanism comprised of one or more annular members rotates freely on a shaft coaxial to the central axis. Each annular member has a pair of oppositely axially extending contact lugs, the outboard ones of which are engageable with the wind up roller drive lugs, and the inboard ones of which are mutually engageable. A single motor directly drives only the first wind up roller, in response to a conventional controller that can sense either actual belt position or roller position.
The presence of the one or more freely rotating members between the two wind up rollers allows for driving engagement between the two when, but only when, the first wind up roller has been turned far enough in either given direction to remove all of the “slack” from the system. That is, when all of the various drive and contact lugs are mutually engaged. Assuming that the separate belts start out with their apertures in an aligned position, but with some slack in the system, the single motor turns only the first windup roller until the point that all of the various lugs make contact with one another. During this initial movement, the first belt moves, but the second belt does not, so the two belt apertures move into an “offset” relative position. Once contact is made, the second wind up roller begins to move as well, and both belts move in the same direction, while maintaining the offset. When the second belt has been moved to a desired position, the motor and first wind up roller can be moved back in the opposite direction, moving the first belt aperture back, but without moving the second belt, until the point where all of the lugs mutually contact again in the opposite direction. At that point, further movement of the first wind up roller would again move both belts, but with a reversed relative offset between the two belts. The amount of total relative belt offset available would be set by varying the total number of annular members, and thereby varying the total number of roller turns possible while the system is “slack”.
REFERENCES:
patent: 5905224 (1999-05-01), Jordan
patent: 6119313 (2000-09-01), Gohler
Delphi Technologies Inc.
Griffin Patrick M.
Masih Karen
LandOfFree
Single motor, two film belt control system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Single motor, two film belt control system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Single motor, two film belt control system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2534634