Single layer integrated metal enhancement mode field-effect tran

Active solid-state devices (e.g. – transistors – solid-state diode – Heterojunction device – Field effect transistor

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

257472, 257744, H01L 310328

Patent

active

060668652

ABSTRACT:
An enhancement mode periodic table group III-IV semiconductor field-effect transistor device is disclosed. The disclosed transistor includes single metallization for ohmic and Schottky barrier contacts, a permanent non photosensitive passivation layer (a layer which has also been used for masking purposes during fabrication of the transistor) and a gate element of small dimension and shaped cross section as needed to provide desirable microwave spectrum electrical characteristics. The transistor of the invention is fabricated from undoped semiconductor materials disposed in a layered wafer structure and selectively doped by ion implantation to achieve either a p-channel or an n-channel transistor. The semiconductor materials may include two, one or zero buffer layers in their layer structure. The disclosed transistor is of reduced fabrication cost, increased dimensional accuracy and state of the art electrical performance.

REFERENCES:
patent: 3764865 (1973-10-01), Napoli et al.
patent: 3855690 (1974-12-01), Kim et al.
patent: 3861024 (1975-01-01), Napoli et al.
patent: 3943622 (1976-03-01), Kim et al.
patent: 4961194 (1990-10-01), Kuroda et al.
patent: 5698870 (1997-12-01), Nakano et al.
patent: 5698900 (1997-12-01), Bozada et al.
patent: 5796131 (1998-08-01), Nakano et al.
patent: 5869364 (1999-02-01), Nakano et al.
patent: 5940694 (1999-08-01), Bozada et al.
patent: 5976920 (1999-11-01), Nakano et al.
D. J. Gorney, J. B. Blake, H. C. Koons, M. Schulz, A. L. Vampola, R. L. Walterscheid, and J. R. Wertz, "The Space Environment and Survivability", Chapter 8 in Space Mission Analysis and Design, Second ed., W. J. Larson and J. R. Wertz eds., Microcosm, Inc., Torrance, CA, pp. 197-226, 1992.
F. B. McClean, "Interactions of Hazardous Environments with Electronic Devices", Hardening Semiconductor Components Against Radiation and Temperature, W. R. Dawes Jr., F. B. McClean, P. A. Robinson Jr., J. J. Silver, Noyes Data Corp., Park Ridge, NJ, pp. 1-71, 1989.
C. C. Messenger and M. S. Ash, in The Effects of Radiation on Electronic Systems, Van Nostrand Rheinhold Co., NY, pp. 266-322, 1986.
R. Zuleeg, "Radiation Effects in GaAs FET Devices", Proc. of IEEE, vol. 77, pp. 389-407, 1989.
J. H. Cutchin, P. W. Marshall, T. R. Weatherford, J. Langworthy, E. L. Peterson, and A. B. Campbell, "Heavy Ion and Proton Analysis of a GaAs C-HIGFET SRAM", IEEE Trans. Nucl. Sci., vol. 40, pp. 1660-1665, 1993.
D. DiBitonto, W. Karpinski, K. Lubelsmeyer, D. Pandoulas, G. Pierschel, C. Rente, K. Subhani, and F. Tenbusch, "Radiation and Cryogenic Test Results with a Monolithic GaAs Preamplifier in C-HFET Technology", Nucl. Inst. Methods Phys. Res. A, vol. 350, pp. 530-537, 1994.
W. Karpinski, K. Lubelsmeyer, D. Pandoulas, G. Pierschel, C. Rente, K. Subhani, and F. Tenbusch, "Characteristics of GaAs Complementary Heterojunction FETs (C-HFETs) and C-HFET Based Amplifiers Exposed to High Neutron Fluences", Nucl. Inst. Methods Phys. Res. A, vol. 361, pp. 558-567, 1995.
R. Williams, Modern GaAs Processing Methods, 2nd ed., Artech House, Norwood, MA, pp. 260-270, 1990.
M. Hagio, S. Katsu, M. Kazumura, and G. Kano, "A New Self-Align Technology for GaAsAnalog MMIC's", IEEE Trans. on Elect. Dev., vol. 33, No. 6, pp. 754-758, Jun. 1986.
G. C. DeSalvo, T. K. Quach, R. W. Dettmer, K. Nakano, J. K. Gillespie, G. D. Via, J. L. Ebel, and C. K. Havasy, "Simplified Ohmic and Schottky Contact Formation for Field Effect Transistors Using the Single Layer Integrated Metal Field Effect Transistor", IEEE Trans. on Semi. Manufacturing, vol. 8, pp. 314-318, 1995.
C. K. Havasy, T. K. Quach, C. A. Bozada, G. C. DeSalvo, R. W. Dettmer, J. L. Ebel, K. Nakano, J. K. Gillespie, and G. D. Via, "A Highly Manufacturable 0.2 .mu.m AlGaAs/InGaAs PHEMT Fabricated Using the Single-Layer Integrated-Metal FET (SLIMFET) Process", GaAs IC Symposium Proceedings, San Diego, CA, Oct. 29-Nov. 1, 1995, IEEE Press, Piscataway, NJ, pp. 89-92, 1995.
H. Kaakani, "GaAs CHFET Overview", Personal communication between Phillips Laboratory, Kirtland, AFB, NM and Honeywell Solid State Electronics Center, Plymouth, MN, Feb., 1995.
J. K. Abrokwah, J. H. Huang, W. Ooms, C. Shurboff, J. A. Hallmark, R. Lucero, J. Gilbert, B. Bernhardt, and G. Hansell, "A Manufacturable Complementary GaAs Process", 1993 IEEE GaAs IC Symposium Technical Digest, IEEE Press, Piscataway, NJ, pp. 127-130, 1993.
M. Meyer, "Digital GaAs", Compound Semiconductor, vol. 2, No. 5, pp. 26-32, 1996.
K. G. Merkel, C. L. A. Cerny, V. M. Bright, F. L. Schuermeyer, T. P. Monahan, R. T. Lareau, R. Kaspi, and A. K. Rai, "Improved p-channel InAlAs/GaAsSb HIGFET Using Ti/Pt/Au Ohmic Contacts to Beryllium Implanted GaAsSb", Solid State Electronics, vol. 39, pp. 179-191, 1996.
K. J. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamatoto, "High-Performance In P-Based Enhancement-Mode HEMT's Using Non-Alloyed Ohmic Contacts and Pt-Based Buried-Gate Technologies", IEEE Trans. on Elect. Dev., vol. 43, No. 2, pp. 252-257, Feb. 1996.
J. M. Woodall et al., "Ohmic Contacts to n-GaAs Using Graded Band Gap Layers of Ga.sub.1-x In.sub.x As Grown by Molecular Beam Epitaxy" J. Vacuum. Science. Technology. vol. 19, No. 3, Sep./Oct. 1981, p. 626.
S. Kuroda et al. "HEMT with Non-alloyed Ohmic Contacts Using n.sup.+ -InGaAs Cap Layer", IEEE Electron Device Letters, vol. EDL-8, No. 9, Sep. 1987, p. 389.
C. K. Peng et al., "Extremely Low Non-alloyed and Alloyed Contact Resistance Using an InAs Cap Layer on InGaAs by Molecular-Beam Epitaxy", J. Applied. Physics. vol. 64, No. 1, Jul. 1, 1988, p. 429.
T. Nittono et al., "Non-Alloyed Ohmic Contacts to n-GaAs Using Compositional Graded In.sub.x Ga.sub.1-x As Layers", Japanese Journal of Applied Physics, vol. 27, No. 9, Sep. 1988, pp. 1718-1722.
A. Ketterson et al., "Extremely Low Contact Resistances for AlGaAs/GaAs Modulation-Doped Field-Effect Transistor Structures", J. Applied. Physics. vol. 57, No. 6, p. 2305.
J. Sewell, C. Bozada, "A Combined Electron Beam/Optical Lithography Process Step for the Fabrication of Sub-Half Micron-Gate-Length MMIC Chips", Fourth National Technology Transfer Conference, National Aeronautics and Space Administration, Publication No. 3249, 1993, pp. 54-59.
P.W. Marshall, C.J. Dale, T.R. Weatherford, M. LaMacchia and K.A. LaBel, "Particle-Induced Mitigation of SEU Sensitivity in High Data Rate GaAs HIGFET Technologies", IEEE Trans. Nucl. Sci., vol. 42, pp. 1844-1849, 1995.
S. Kuroda et al., "A New Fabrication Technology for A1GaAs HEMT LSI's Using InGaAs Nonalloyed Ohmic Contacts", IEEE Trans. Nucl. Sci., vol. 36, pp. 2196-2203, 1989.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Single layer integrated metal enhancement mode field-effect tran does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Single layer integrated metal enhancement mode field-effect tran, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Single layer integrated metal enhancement mode field-effect tran will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1838731

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.