Single isomer methylphenidate and resolution process

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S313000, C514S513000, C546S184000

Reexamination Certificate

active

06531489

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the resolution of threo methylphenidate via crystallisation of diastereomeric salts, and to the especially pure enantiomers thus obtained.
BACKGROUND OF THE INVENTION
Methylphenidate is a therapeutic agent that is widely used in the treatment of attention-deficient hyperactivity disorder. It is a controlled substance. Methylphenidate was first prepared as a mixture of the erythro and threo racemates. U.S. Pat. No. 2,957,880 discloses studies upon the two racemic mixtures, which revealed that the therapeutic activity resides in the threo diastereomer. It is now considered that it is the d-threo [or (R,R)] enantiomer that has the preferred therapeutic activity. Uses of this enantiomer are disclosed in PCT/GB96/01688, PCT/GB96/01689 and PCT/GB96/01690, the contents of which are incorporated herein by reference.
The resolution of threo methylphenidate can be achieved using the expensive resolving agent 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate, a process first reported by Patrick et al (The Journal of Pharmacology and Experimental Therapeutics, 241:152-158 (1987)), and subsequently used by other workers in the field (e.g. Aoyama et al, Journal of Chromatography, 494:420 (1989)). This is perceived to be a more efficient procedure than the method disclosed in U.S. Pat. No. 2,957,880, wherein the corresponding amide of erythro methylphenidate (i.e. R-CONR
2
rather than R-CON
2
Me) is resolved with tartaric acid prior to amide hydrolysis and equilibration at the benzylic centre, followed by esterification of the resultant threo-acid.
SUMMARY OF THE INVENTION
This invention is based upon the discovery that racemic threo methylphenidate can be resolved using inexpensive carboxylic acids, specifically O,O′-diaroyltartaric acids, with surprising efficiency. In one embodiment of the present invention, either D- or L-O,O-di-toluoyltartaric acid forms diastereomeric salts with threo-methylphenidate, and these salts are very readily separated.
An important consequence of this discovery is that the desired enantiomer is obtained in greater chemical purity than by any prior method. Thus, while the process of Patrick et al may give the desired product contaminated with resolving agent, this contaminant can only be removed by repeated extractions that cause hydrolysis of the ester, leaving ritalinic acid as a contaminant.
Needless to say, a product intended for administration to humans should be as pure as possible. Surprisingly, the process of this invention gives the desired enantiomer in very high chemical and enantiomeric purity. In particular, the product is substantially free of resolving agent and/or ritalinic acid (and/or the opposite enantiomer). This purity can be at least 98%, preferably at least 99%, more preferably at least 99.5%, and most preferably at least 99.9%. The product may be in free base form or as a pharmaceutically-acceptable salt, e.g. the hydrochloride.
DESCRIPTION OF THE INVENTION
The process of this invention may be carried out under conditions that are generally known to those skilled in the art of classical salt resolution procedures.
For example, a mixture of threo-methylphenidate and 1 molar equivalent of D-O,O-ditoluoyltartaric acid in an inert organic solvent is heated and then allowed to cool; the resultant precipitate is filtered, washed with an appropriate solvent and dried to afford directly a salt enriched in at least 97% ee d-threo-methylphenidate, i.e containing less than 1.5% of the opposite enantiomer. Enrichment to higher ee, e.g. at least 99%, can be simply achieved, by reslurrying in fresh solvent and filtering. This is a great improvement on the literature method using 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate, described by Patrick et al, supra, in which the first crystallisation gave a salt corresponding to 85-90% ee material, and further recrystallisation of this material was necessary to raise the ee to 95-97%. The latter level of optical purity is achieved in the present invention in one crystallisation, with an overall higher yield. The method of this invention is therefore more efficient and more economical than the method described by Patrick et al.
Methylphenidate may initially be obtained as a salt of the resolving agent. This may be converted directly to the hydrochloride salt, or any other pharmaceutically-acceptable salt, by a salt exchange procedure. It may be preferable to release the free base, by salt cracking. If desired, the free base can then be converted to a salt form. All these procedures are known to those skilled in the art.
Further advantages of the present invention are as follows:
(i) Salt cracking at pH 9-10 is by addition of aqueous sodium hydroxide, whereas dilute aqueous sodium carbonate is needed for salts of the more base-labile 1,1′-binaphthyl-2,2′diyl hydrogen phosphate; this renders the novel process more volume efficient.
(ii) Lower volume of aqueous medium in (i) means fewer extractions into organic solvent (TBME rather than diethyl ether) to isolate methylphenidate free base.
(iii) Chemical robustness of DTTA allows for clean and efficient recovery.
Either isomer of methylphenidate can be easily obtained by this procedure, e.g. by simply using the D- or L-isomer of the diaroyl tartaric acid derivative as required.
Single isomer methylphenidate according to this invention, especially pure d-threo-methylphenidate, can be used in therapy for the same purposes as the racemate, e.g. in the treatment of ADHD or narcolepsy. The compound can be formulated with any suitable carrier, in any suitable dosage, as will be apparent to one of ordinary skill in the art. Reference in this context may be made to any of the three PCT Applications identified above.


REFERENCES:
patent: 2957880 (1960-10-01), Rometsch
patent: 5093350 (1992-03-01), Huang et al.
patent: 5733756 (1998-03-01), Zeitlin et al.
patent: 7247286 (1995-09-01), None
patent: 9531436 (1995-11-01), None
Shafi'ee, Abbas et al. (1967) “Absolute Configurations of Enantiomeric Pheniramines, Methylphenidates, and Pipradrols”J. Pharm. Sci.56(12):1689-1690.
Ding, Y-S. et al. (1994) “Synthesis of the Racemate and Individual Enantiomers of [11C] Methylphenidate for Studying Presynaptic Dopamingergic Neuron with Positron Emission Tomography”Journal of Labelled Compounds and Radiopharmaceuticals34(10):989-997.
Patrick, K. et al. (1987) “Pharmacology of the Enantiomers of threo-Methylphenidate”The Journal of Pharmacology and Experimental Therapeutics241(1):152-158.
Deutsch, H. et al. (1996) “Synthesis and Pharmacology of Potential Cocaine Antagonists. 2. Structure-Activity Relationship Studies of Aromatic Ring-Substituted Methylphenidate Analogs”J. Med. Chem39:1201-1209.
Aoyama, T. et al. (1989) “Gas Chromatographic-Mass Spectrometric Analysis of threo-Methylphenidate Enantiomers in Plasma”Journal of Chromatography494:420-423.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Single isomer methylphenidate and resolution process does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Single isomer methylphenidate and resolution process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Single isomer methylphenidate and resolution process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3073081

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.