Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Metal – metal oxide or metal hydroxide
Reexamination Certificate
2002-04-08
2004-05-25
Bell, Mark L. (Department: 1755)
Catalyst, solid sorbent, or support therefor: product or process
Catalyst or precursor therefor
Metal, metal oxide or metal hydroxide
C502S305000, C502S306000, C502S308000, C502S311000, C502S313000, C502S317000, C502S319000, C502S321000, C502S324000, C502S325000, C502S326000, C502S328000, C502S330000, C502S332000, C502S338000, C502S339000, C502S340000, C502S341000, C502S344000, C502S347000, C502S349000, C502S353000, C502S355000
Reexamination Certificate
active
06740620
ABSTRACT:
The present invention relates to a catalyst for the oxidation of alkanes, or a mixture of alkanes and alkenes, to their corresponding unsaturated carboxylic acids by vapor phase catalytic oxidation and, more particularly, to a method of making the catalyst and to a process for the vapor phase catalytic oxidation of alkanes, or a mixture of alkanes and alkenes, to their corresponding unsaturated carboxylic acids using a catalyst prepared by the present method of making a catalyst. The present invention also relates to a process for the vapor phase catalytic oxidation of alkanes, or a mixture of alkanes and alkenes, in the presence of ammonia, to their corresponding unsaturated nitrites using a catalyst prepared by the present method of making a catalyst.
Nitrites, such as acrylonitrile and methacrylonitrile, have been industrially produced as important intermediates for the preparation of fibers, synthetic resins, synthetic rubbers, and the like. The most popular method for producing such nitrites is to subject an olefin such as propene or isobutene to a catalytic reaction with ammonia and oxygen in the presence of a catalyst in a gaseous phase at a high temperature. Known catalysts for conducting this reaction include a Mo—Bi—P—O catalyst, a V—Sb—O catalyst, an Sb—U—V—Ni—O catalyst, a Sb—Sn—O catalyst, a V—Sb—W—P—O catalyst and a catalyst obtained by mechanically mixing a V—Sb—W—O oxide and a Bi—Ce—Mo—W—O oxide. However, in view of the price difference between propane and propene or between isobutane and isobutene, attention has been drawn to the development of a method for producing acrylonitrile or methacrylonitrile by an ammoxidation reaction wherein a lower alkane, such as propane or isobutane, is used as a starting material, and it is catalytically reacted with ammonia and oxygen in a gaseous phase in the presence of a catalyst.
In particular, U.S. Pat. No. 5,281,745 discloses a method for producing an unsaturated nitrile comprising subjecting an alkane and ammonia in the gaseous state to catalytic oxidation in the presence of a catalyst which satisfies the conditions:
(1) the mixed metal oxide catalyst is represented by the empirical formula
Mo
a
V
b
Te
c
X
x
O
n
wherein X is at least one element selected from the group consisting of niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, antimony, bismuth, boron and cerium and, when a=1, b=0.01 to 1.0, c=0.01 to 1.0, x=0.01 to 1.0 and n is a number such that the total valency of the metal elements is satisfied; and
(2) the catalyst has X-ray diffraction peaks at the following angles (±0.3°) of 2&thgr; in its X-ray diffraction pattern: 22.1°, 28.2°, 36.2°, 45.2° and 50.0°.
Similarly, Japanese Laid-Open Patent Application Publication No. 6-228073 discloses a method of nitrile preparation comprising reacting an alkane in a gas phase contact reaction with ammonia in the presence of a mixed metal oxide catalyst of the formula
W
a
V
b
Te
c
X
x
O
n
wherein X represents one or more elements selected from niobium, tantalum, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, antimony, bismuth, indium and cerium and, when a=1, b=0.01 to 1.0, c=0.01 to 1.0, x=0.01 to 1.0 and n is determined by the oxide form of the elements.
Unsaturated carboxylic acids such as acrylic acid and methacrylic acid are industrially important as starting materials for various synthetic resins, coating materials and plasticizers. Commercially, the current process for acrylic acid manufacture involves a two-step catalytic oxidation reaction starting with a propene feed. In the first stage, propene is converted to acrolein over a modified bismuth molybdate catalyst. In the second stage, acrolein product from the first stage is converted to acrylic acid using a catalyst composed of mainly molybdenum and vanadium oxides. In most cases, the catalyst formulations are proprietary to the catalyst supplier, but, the technology is well established. Moreover, there is an incentive to develop a single step process to prepare the unsaturated acid from its corresponding alkene. Therefore, the prior art describes cases where complex metal oxide catalysts are utilized for the preparation of unsaturated acid from a corresponding alkene in a single step.
Japanese Laid-Open Patent Application Publication No. 07-053448 discloses the manufacture of acrylic acid by the gas-phase catalytic oxidation of propene in the presence of mixed metal oxides containing Mo, V, Te, O and X wherein X is at least one of Nb, Ta, W, Ti, Al, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Sb, Bi, B, In, Li, Na, K, Rb, Cs and Ce.
Commercial incentives also exist for producing acrylic acid using a lower cost propane feed. Therefore, the prior art describes cases wherein a mixed metal oxide catalyst is used to convert propane to acrylic acid in one step.
U.S. Pat. No. 5.380,933 discloses a method for producing an unsaturated carboxylic acid comprising subjecting an alkane to a vapor phase catalytic oxidation reaction in the presence of a catalyst containing a mixed metal oxide comprising, as essential components, Mo, V, Te, O and X, wherein X is at least one element selected from the group consisting of niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, antimony, bismuth, boron, indium and cerium; and wherein the proportions of the respective essential components, based on the total amount of the essential components, exclusive of oxygen, satisfy the following relationships:
0.25<r(Mo)<0.98, 0.003<r(V)<0.5, 0.003<r(Te)<0.5 and 0.003<r(X)<0.5, wherein r(Mo), r(V), r(Te) and r(X) are the molar fractions of Mo, V, Te and X, respectively, based on the total amount of the essential components exclusive of oxygen.
The mixed metal oxide catalysts useful in the preparation of unsaturated carboxylic acids and unsaturated nitrites, as delineated above, can form more than one phase from the same starting materials under the same conditions. Often one phase performs better than the others, so it is desirable to prepare a catalyst that contains that phase exclusively, with the other phases substantially absent.
The aforementioned mixed metal oxide catalysts useful in the preparation of unsaturated carboxylic acids and unsaturated nitrites form at least three phases: a hexagonal phase (phase A), which is active but relatively unselective; an orthorhombic phase (phase B), which is active and selective; and a third phase (phase C) which is still poorly charcterized. It is desirable to form the orthorhombic phase (phase B) selectively.
Two methods of forming the orthorhombic phase (phase B) with substantially reduced content of the hexagonal phase (phase A) are known. The first method involves the extraction of a mixed phase catalyst with a suitable solvent. In particular, Japanese Laid-Open Patent Application Publication No. 10-330343 discloses the washing of a mixed metal oxide of the formula
Mo
a
V
b
Sb
c
X
x
O
n
wherein X is at least one metal element selected from Ti, Zr, Nb, Ta, Cr, W, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Zn, In, Sn, Pb, Bi, Ce and alkaline earth metals, wherein, when a=1, 0.02≦b≦0.99, 0.001≦c≦0.9, 0≦x≦0.89, 0.1≦c/b≦0.80 and n is a value determined by the oxidation state of the other elements,
with a solvent selected from aqueous oxalic acid, ethylene glycol or aqueous hydrogen peroxide. The so-formed catalyst is used for the ammoxidation of alkanes to form nitriles. Japanese Laid-Open Patent Application Publication No. 11-043314 discloses the washing of a mixed metal oxide of the formula
Mo
a
V
b
Sb
c
X
x
O
n
wherein X is at least one metal element selected from Ti, Zr, Nb, Ta, Cr, W, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Zn, In, Sn, Pb, Bi, Ce and alkaline earth metals,
wherein, when a=1, 0.02≦b≦0.99, 0.001≦
Bogan, Jr. Leonard Edward
Bors Daniel A.
Cavalcanti Fernando Antonio Pessoa
Clark, Jr. Michael Bruce
Gaffney Anne Mae
Bell Mark L.
Bodner Marcella H.
Hailey Patricia L.
Holler Alan
Rohn and Haas Company
LandOfFree
Single crystalline phase catalyst does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Single crystalline phase catalyst, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Single crystalline phase catalyst will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3197169