Single crystal titanium nitride epitaxial on silicon

Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Of specified material other than unalloyed aluminum

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

257383, 257486, 257751, 257913, 257190, H01L 2912, H01L 2940, H01L 29161

Patent

active

054061237

ABSTRACT:
Epitaxial growth of films on single crystal substrates having a lattice mismatch of at least 10% through domain matching is achieved by maintaining na.sub.1 within 5% of ma.sub.2, wherein a.sub.1 is the lattice constant of the substrate, a.sub.2 is the lattice constant of the epitaxial layer and n and m are integers. The epitaxial layer can be TiN and the substrate can be Si or GaAs. For instance, epitaxial TiN films having low resistivity can be provided on (100) silicon and (100) GaAs substrates using a pulsed laser deposition method. The TiN films were characterized using X-ray diffraction (XRD), Rutherford back scattering (RBS), four-point-probe ac resistivity, high resolution transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. Epitaxial relationship was found to be <100> TiN aligned with <100> Si. TiN films showed 10-20% channeling yield. In the plane, four unit cells of TiN match with three unit cells of silicon with less than 4.0% misfit. This domain matching epitaxy provides a new mechanism of epitaxial growth in systems with large lattice misfits. Four-point probe measurements show characteristic metallic behavior of these TiN films as a function of temperature with a typical resistivity of about 15 .mu..OMEGA.-cm at room temperature.

REFERENCES:
patent: 4948459 (1990-08-01), van Laarhoven et al.
patent: 5022958 (1991-06-01), Favreau et al.
Barnett et al., "Epitaxial Growth of ZyN on Si (100)", Applied Physics Letter 53 (5), Aug. 1, 1988, pp. 400-402.
Choi et al., "Growth of Epitaxial TiN Thin Films on Si (100) By Reactive Magnetron Sputtering", J. Vac. Sci. Technol. B, vol. 9, No. 2, pp. 221-227 (Mar./Apr. 1991).
Chami et al. "Polarity Determination in Compound Semiconductors by Channeling: Application to Heteroepitaxy", Appl. Phys. Lett. 52(18), May 2, 1988, pp. 1502-1504.
"Orientation Selection in Heterostructure Epitaxy", IBM Technical Disclosure Bulletin, vol. 31, No. 2, Jul. 1988.
Chyi et al., "Molecular Beam Epitaxial Growth and Characterization of InSb on Si", Appl. Phys. Lett. 54(11), Mar. 13, 1989, pp. 1016-1018.
Lo et al., "Cation Microstructures on Flat and Stepped Si Surfaces: Guidance for Growing High-Quality GaAs on (100) Si Substrates", Appl. Phys. Lett. 52(17), Apr. 25, 1988, pp. 1386-1388.
J. Narayan, et al., "Epitaxial Growth of TiN Films on (100) Silicon Substrates by Laser Physical Vapor Deposition," Appl. Phys. Lett., 61(11):1290-1292 (Sep. 1992).
R. Chowdhury, et al., "Pulsed Laser Deposition of Epitaxial Si/TiN/Si(100) Heterostructures," Appl. Phys. Lett., 64(10):1236-1238 (Mar. 1994).
J. Narayan, et al., "Formation of Epitaxial and Textured Platinum Films on Ceramics-(100) MgO Single Crystals by Pulsed Laser Deposition," Appl. Phys. Lett., 64(16):1-4 (Apr. 1994).
T. Zheleva, et al., "Epitaxial Growth in Large-Lattice-Mismatch System," J. Appl. Phys., 75(2):860-871 (Jan. 1994).
J. Narayan, et al., "Dislocations and Interfaces in Semiconductor Heterostructures," Journal of Metals, 41(4):10-15 (Apr. 1989).
Wittmer, "Properties and Microelectronic Applications of Thin Films of Refractory Metal Nitrides", J. Vac. Sci. Technol. A, vol. 3, No. 4, pp. 1797-1803 (Jul./Aug. 1985).
Gupta et al., "Materials for Contacts, Barriers and Interconnects", Semiconductor International, pp. 80-87 (Oct. 1989).
Hultman et al., "Transmission Electron Microscopy Studies of Microstructural Evolution, Defect Structure . . . Sputter Deposition", Thin Solid Films, 205 pp. 153-164 (May 1991).
Buinno et al. "Laser Deposition of Epitaxial Titanium Nitride Films on (100)MgO", Appl. Phys. Lett., 55 (4), pp. 405-407 (Jul. 1989).
Singh et al., "Theoretical Model for Deposition of Superconducting Thin Films Using Pulsed Laser Evaporation Technique", J. Appl. Phys., 68(1) pp. 233-247 (Jul. 1990).
Buinno et al., "Low Temperature Processing of Titanium Nitride Films by Laser Physical Vapor Deposition", Appl. Phys. Lett., 54 (16) pp. 1519-1521 (Apr. 1989).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Single crystal titanium nitride epitaxial on silicon does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Single crystal titanium nitride epitaxial on silicon, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Single crystal titanium nitride epitaxial on silicon will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1540509

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.