Simultaneous, wavelength multiplexed vision screener

Optics: eye examining – vision testing and correcting – Eye examining or testing instrument – Objective type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06663242

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to a method and apparatus for screening a patient to detect diseases and abnormalities of the eyes and lids.
More particularly, this invention relates to a method and apparatus for photoscreening a patient by generating wavelength-encoded images of a patient's eyes and analyzing these images to detect diseases and other abnormalities.
BACKGROUND OF THE INVENTION
It is well known that approximately 2-5% of children will develop some degree of amblyopia and another 15%-20% possess some form of visual malady. Screening eyes to detect diseases and abnormalities, such as refractive errors, both spherical and cylindrical in optical power, ocular alignment, media opacities, and ptosis, is very important because if these diseases are not corrected before the ages of 7 to 9, a person may suffer irreversible vision loss. Screening eyes in young children accurately and consistently, however, is not an easy task, especially when computer automated diagnosis in involved.
As mentioned previously, many of these diseases and abnormalities must be detected and corrected at an early age, and, accordingly, the typical screening patient is a child in preschool through third grade. Generally, patients in this age group have a very short attention span, which makes it difficult to perform an accurate screening of the eye. As a result, screening tests for patients in this age group must be expeditious, simple, passive (i.e., no patient-technician interaction), non-intrusive, and portable enough for field-testing in the school environment. One type of screening test that satisfies these criteria is photoscreening.
Photoscreening is the process of taking a photograph of the patient's eyes and analyzing that photograph to detect diseases and other abnormalities. In general photoscreening systems include a camera (film or digital), and single, multiple, or ring-type flashes located near (or on) the camera's optical axis. By simultaneously illuminating the eyes with the flash and taking a photograph, one creates an image that may be analyzed to detect diseases and other abnormalities in the eyes.
It is known in the art that Caucasians produce a distinctive red retinal reflex, or retinal return reflection in a photoscreened image. This red retinal reflection is visible to the camera when illuminated by a near (or on) axis flash and the pupils are sufficiently dilated. Other ethnic groups, however, differ rather dramatically. Persons from African-American, Asian, and Hispanic descent do not, in general, produce a red retinal reflex and, in fact, with an eye that can focus properly, off axis photoscreening may produce no detectable retinal reflex. This is particularly alarming since it may be difficult, if not impossible, to detect cataracts or other media opacities in these ethnic groups via traditional photoscreening techniques. The present invention overcomes the deficiencies associated with traditional photoscreening and allows a robust method for computer-aided screening.
For example, U.S. Pat. No. 5,989,194 issued to Davenport et al. on Nov. 23, 1999 and entitled, “Method and Apparatus for Detecting Ocular Disease and Abnormalities” and U.S. Pat. No. 6,095,989 issued to Hay et al. on Aug. 1, 2000 and entitled, “Optical recognition methods for locating eyes” (continuation-in-part of U.S. Pat. Nos. 5,632,282 and 5,355,895.) both teach a screening system which includes a singular flash and provides information in only one meridian of the eye. As a result, these systems are unable to detect astigmatism in some axes of the eye and, in addition, neither of these patents allows one to obtain quantitative numbers relating to the patient's pupil size or baseline retinal reflectivity prior to the actual photoscreening process. It should also be noted that the Hay patent includes extensive techniques for computer analysis of typical photoscreened images and, therefore, has inherent difficulties analyzing these images on the minority groups mentioned earlier. The contention is that robust analysis of traditional (single, double, or ring type off-axis flash systems) photoscreened images for media opacities and refractive errors is difficult to perform, and is especially difficult to analyze via computer image processing. The present invention, with its novel infrared prescreening capabilities and wavelength encoded image acquisition, allows for robust image analyses across all ethnic groups by both manual and digital means.
A two-flash screening system is described in U.S. Pat. No. 4,523,820 issued to Kaakinen on Jun. 18, 1985, and entitled “Procedure and Means for Establishing and Recording Errors of the Eye”. The '820 patent teaches a system and method for obtaining a photograph of a patient's eyes by simultaneously triggering two flashes located in different meridians of the eye. It is true that this system is more robust in the detection of astigmatism over single flash systems, but, because both flashes are triggered simultaneously and overlap in the resulting photograph, it is difficult to interpret the contributions made from each flash. While it may be possible to determine that a patient's vision has sphere and cylinder errors, the overlapped images make it difficult to specify the extent of these errors. This system also suffers from problems associated with traditional photoscreening systems mentioned earlier.
Additional two-flash photoscreening systems are described in U.S. Pat. No. 4,989,968 issued to Friedman on Feb. 5, 1991 and entitled, “Photocreening Camera System” and U.S. Pat. No. 6,089,715 issued to Hoover et al. on Jul. 18, 2000 and entitled “Automated Photo refractive Screening”. Both of these patents describe systems that are similar to the ones in the '820 patent, except that the flashes are either mechanically rotated or the camera is physically rotated in order to get two singular photographs, each containing information regarding different meridians of the eye. The primary problem with both of these systems is the 15 to 20 second time delay between the flashes. During this time delay, the patient's pupils may change in diameter, the eyes may change in accommodation, or the eyes may align differently, any of which will cause a significant increase in false positive screenings. Again, both of these systems suffer from problems associated with traditional photoscreening systems mentioned earlier. It should be noted that the algorithms employed by the Hoover patent base their pupil detection on the red retinal reflex (step 52 '715 patent) in order to perform computer-aided diagnosis.
Finally, a screening system utilizing a ring flash is disclosed in U.S. Pat. No. 4,586,796 issued to Molteno on May 6, 1986 and entitled, “Testing to Determine the Fixation and Focusing of Living Eyes”. While this system does allow one to determine that there is a problem with the eyes, determining the type of problem is difficult. This is true because the ring flash is symmetrical around the optical axis and, as a result, while it is possible to detect both cylindrical and spherical optical errors, it is unclear in the photograph whether the spherical error is myopic or hyperopic in nature or in which axis the cylinder power is oriented.
Thus, what is needed is a robust system and method for screening eyes that allows one to detect and identify various types of diseases and abnormalities in the eyes with a high degree of accuracy and specificity across all ethnic groups.
SUMMARY OF THE INVENTION
The present invention provides an apparatus and method for generating 1.) infrared illuminated images, and 2.) wavelength-encoded images (i.e., the images are generated using different wavelengths of light) of a patient's eyes and 3.) analyzing these images to detect diseases and abnormalities.
The apparatus includes a device for recording images of a patient's eyes while 1.) the eyes are being illuminated with infrared light, and 2.) the eyes are being simultaneously illuminated with wavelength-encoded l

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Simultaneous, wavelength multiplexed vision screener does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Simultaneous, wavelength multiplexed vision screener, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simultaneous, wavelength multiplexed vision screener will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3106719

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.