Simultaneous wavelength conversion and amplitude modulation...

Optical: systems and elements – Optical modulator – Light wave temporal modulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S276000

Reexamination Certificate

active

06771409

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related to an optical element, and more particularly to an optical element capable of performing wavelength conversion and amplitude modulation simultaneously.
BACKGROUND OF THE INVENTION
Quasi-phase-matched (QPM) nonlinear frequency conversion has been an attractive means for generating a wide range of laser wavelengths. For example, electric-field poled lithium niobate (PPLN) (L. E. Myers, G. D. Miller, E. C. Eckardt, M. M. Fejer, and R. L. Byer,
Opt. Let.
20, 52 (1995)) has an effective nonlinear coefficient as high as 17 pm/volt, which makes PPLN an important QPM crystal for generating wavelength-tunable laser radiations. Other popular QPM crystals include periodically poled LiTaO
3
, KTiOPO
4
, RbTiOAsO
4
, and so on. Different QPM crystals have different material advantages. For example, when compared with PPLN, LiTaO
3
has a better transparency in the shorter wavelengths, KTiOPO
4
sustains higher laser fluence, and RbTiOAsO
4
has a much lower coercive field for electrical poling. Quasi-phase-matched frequency conversion has been applied to numerous applications such as gas sensing, optical communication, and so on. In practice, signal modulation is desirable for sensitive detection or information encoding. In all available technologies, to the knowledge of one skilled in the art, frequency conversion and signal modulation have to be implemented separately.
The conventional amplitude-modulation techniques, to name a few, include the use of an optical chopper, the current-controlled driver for diode lasers, the Mach-Zehnder modulator, and the electro-optic birefringence crystal between two crossed polarizers. However, there is no effective amplitude-modulation technique during wavelength conversion without suffering from the disadvantages of the small modulation bandwidth, frequency chirping, or complexity associated with a conventional amplitude modulator.
In addition, Quasi-phase-matched nonlinear frequency conversion imposes a 180-degree reset on the relative phase among the three mixing waves every coherence length. In a QPM crystal, any phase error in a nonlinear domain affects the efficiency or the amplitude of the wavelength-converted signals at the downstream output. By manipulating the phase mismatch, it is possible to develop a novel device for simultaneous wavelength conversion and amplitude modulation in a monolithic QPM crystal.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide an effective amplitude-modulation technique during wavelength conversion without suffering from the disadvantages of the small modulation bandwidth, frequency chirping, or complexity associated with a conventional amplitude modulator.
It is further an object of the present invention to provide an optical element with simultaneous wavelength conversion and amplitude modulation in a monolithic QPM nonlinear optical crystal, by manipulating the phase mismatch to alter the amplitude of the wavelength-converted signals at the downstream output.
To achieve the aforementioned objects, an optical element capable of performing nonlinear frequency conversion and amplitude modulation simultaneously is provided. The optical element comprises a nonlinear optical crystal having an electrode-coated dispersion section in quasi-phase-matched (QPM) sections for electrically controlling the relative phase among the mixing waves therein by applying an electric field thereto, whereby performing the nonlinear frequency conversion and amplitude modulation simultaneously.
Preferably, the nonlinear optical crystal is the material capable of being made into quasi-phase-matched (QPM) nonlinear optical element. More preferably, the nonlinear optical crystal is made of the material selected from a group consisting of LiNbO
3
, LiTaO
3
, KTiOPO
4
, and RbTiOAsO
4
.
In accordance with one aspect of the present invention, the electrode-coated dispersion section is sandwiched between two quasi-phase-matched (QPM) sections.
In accordance another aspect of the present invention, the electrode-coated dispersion section is coated with metal electrodes on two opposite surface thereof.
Certainly, the nonlinear frequency conversion includes second harmonic generation (SHG), difference frequency generation (DFG), sum frequency generation (SFG), optical parametric generation (OPG), optical parametric amplification (OPA), and optical parametric oscillation (OPO).
In accordance with another aspect of the present invention, the electrode-coated dispersion section is sandwiched between quasi-phase-matched nonlinear gratings, the nonlinear gratings have both the grating vectors parallel to the wave vector of the mixing waves, and the amplitude modulation can be adjusted to either the linear or the nonlinear modulation regime with a direct-current voltage offset on the electrodes.
In accordance with another aspect of the present invention, the electrode-coated dispersion section is sandwiched between quasi-phase-matched nonlinear gratings. One of the nonlinear gratings has the grating vector parallel to the wave vector of the mixing waves, the other nonlinear grating has the grating vector forming an angle with respect to the wave vector of the mixing waves, and the amplitude modulation can be adjusted to either the linear or the nonlinear modulation regime by laterally translating the nonlinear crystal with respect to stationary mixing waves.
It is further an object of the present invention to provide a method for performing nonlinear frequency conversion and amplitude modulation simultaneously. The method includes the steps of fabricating a quasi-phase-matched (QPM) crystal with an embedded electrode-coated unpoled dispersion section, and applying an electric field to the electrode-coated unpoled dispersion section for controlling the relative phase among the mixing waves in the dispersion section, whereby performing the nonlinear frequency conversion and amplitude modulation simultaneously.
It is still an object of the present invention to provide an optical element capable of performing nonlinear frequency conversion and amplitude modulation simultaneously. The optical element includes a nonlinear optical crystal having multiple electrode-coated dispersion sections monolithically integrated in cascaded quasi-phase-matched (QPM) sections for electrically controlling the relative phase among the mixing waves therein by applying an electric field thereto, whereby performing the nonlinear frequency conversion and amplitude modulation simultaneously.
Preferably, each of the quasi-phase-matched (QPM) sections is the crystal section for performing one of the nonlinear optical processes, including second harmonic generation (SHG), difference frequency generation (DFG), sum frequency generation (SFG), optical parametric generation (OPG), optical parametric amplification (OPA), and optical parametric oscillation (OPO).
In accordance with one aspect of the present invention, the nonlinear optical crystal includes two electrode-coated dispersion sections interleaved in three quasi-phase-matched (QPM) sections for performing the nonlinear frequency conversion and amplitude modulation simultaneously.
It is further an object of the present invention to provide an optical element capable of performing nonlinear frequency conversion and amplitude modulation simultaneously. The optical element includes a nonlinear optical crystal having at least one electrode-coated dispersion section integrated in cascaded quasi-phase-matched (QPM) sections for electrically controlling the relative phase among the mixing waves therein by applying an electric field thereto, and a waveguide formed in the nonlinear optical crystal for guiding the mixing waves through the QPM sections and the dispersion section in the nonlinear optical crystal, whereby performing the nonlinear frequency conversion and amplitude modulation simultaneously.
In accordance with another aspect of the present invention, an optical waveguide, going through the QPM sections and the dispersion section o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Simultaneous wavelength conversion and amplitude modulation... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Simultaneous wavelength conversion and amplitude modulation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simultaneous wavelength conversion and amplitude modulation... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3318468

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.