Simulator for simulating an intelligent network

Telephonic communications – Diagnostic testing – malfunction indication – or electrical... – Of centralized switching system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S221080

Reexamination Certificate

active

06650731

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a simulator for simulating an intelligent network, in particular for locating and analyzing weak points, testing network configurations and/or control mechanisms, and determining ways to increase the network's performance.
BACKGROUND INFORMATION
All over the world, the term intelligent network (IN) is used to describe a network architecture that applies to all telecommunication networks. At the heart of this concept is an individual, software-defined communication profile for customers of telecommunication services. The IN combines important functions and data in a central location and provides them in only one or just a few nodes. These functions and data include, for example, information on how a call with an IN-specific telephone number is to be handled depending on its place of origin, the phone number dialed, the time or day, and/or other parameters, e.g., whether and to which network subscribers a call is to be forwarded, whether and to which recorded announcements a call is to be switched, or whether a call is merely counted. The intelligent network provides an intelligent, distributed database access capability from a plurality of service switching points (SSPs) to data and functions stored in one or just a few service control points (SCPs) for the purpose of controlling the service.
From an organizational standpoint, the intelligent network is a centralized network above a telephone network and provides the intelligence for setting up and releasing calls conducted over the telephone network. The interface between the telephone network and the intelligent network is formed by the SSPs, where calls with IN-specific telephone numbers arrive and, after receiving the processing information from the SCP, are processed according to these instructions, e.g., they are forwarded to a telephone number provided by the SCP.
The individual function complexes are implemented on separate system levels within the intelligent network. IN transport and switching functions are implemented on the service switching point (SSP) level, service control and service data management functions on the service control point (SCP) level, and service management functions in the service management system (SMS). The SSP and SCP levels communicate via the signaling system No. 7 (SS7) over which IN-specific messages are sent for call handling purposes. Signaling transfer and control within the SS7 system are handled by one or more service transfer or service relay points (STP and SRP). The STP or SRP is used to switch and distribute (route) messages on the central signaling channel between the SCP and SSP. The STP or SRP can also serve as a gateway for messages that affect the IN services of a different carrier and must be processed by the SCP in a different IN. An important routing criterion of an IN message is its global title; the STP/SRP level carries out the global title translation (GTT) function.
The SSP level has mechanisms for detecting IN calls, e.g., based on the telephone number, and for supporting these calls. In the case of these calls, an SCP has to be interrogated to obtain information needed to continue setting up the call. The SCP contains programs and corresponding data for controlling the services. In addition, the SCP collects data for billing purposes and statistical analyses. Multiple SSPs access one central SCP. The SCP is subordinate to the service management system, which administers the IN services and IN components.
An intelligent network can be used to implement the following IN services, among other things:
Televoting (televotum) (TV): the televoting service enables the service subscriber to record the number of calls placed to is televoting number. According to one version of this service, the SCP is interrogated each time a call is made, while in another version the calls are pre-counted in the SSP, with the SCP being interrogated only after k number of calls have been processed. Regardless of the version selected, each TV call arriving in the IN system is recorded. In addition, each nth call can be handled in a special way depending on the active traffic routing program, e.g., forwarded to a destination address defined by the service subscriber after being recorded. All other calls are transferred, after being recorded, to a recorded announcement which was also defined in the service subscriber's traffic routing program.
Freephone (FPH): the freephone service allows service users to place a toll-free call to the “service subscriber”. The service subscriber pays all charges.
Universal number (UNU): the universal telephone number service enables callers to reach a service subscriber under a standard, local network-independent telephone number regardless of his present location. The charges for calls of this type may be assigned to the caller only or shared between the calling and called parties, depending on the option selected by the service subscriber.
Tele-info service (TIS): the tele-info service gives callers access to a range of information provided by the service subscriber by dialing the latter's recorded announcement equipment or through direct dialog. The charges are billed to the caller and can be shared between the carrier and service subscriber on the basis of the call-specific information.
Other services are also possible, such as assigning a telephone number to a customer instead of to a line and redirecting all calls made under this telephone number to the customer's present location. In this sense, mobile radio networks are also intelligent networks.
The service subscriber has the option of specifying his service based on additional service features, including: Rerouting: if the dialed subscriber does not answer or the line is busy, the call is either switched to a recorded announcement or another number. This procedure can be repeated up to a preset number of attempts, after which the call is rejected.
Call limit: if the number of calls to a destination number exceeds the limit defined by the service subscriber within a certain period of time, the excess calls are routed to defined alternative destination numbers or recorded announcements.
Time-dependent destination control: the time of the call is compared to the periodic and/or temporary time window. If no valid time window is found, the SCP transfers the IN call to a standard advisory message; otherwise it branches to the call destination or to the next feature.
Origin-dependent destination control: the network origin information is compared to the origin information stored in the traffic routing program. If no match is found, the SCP transfers the call to a standard advisory message; otherwise it branches to the call destination or to the next feature.
Call distribution: the call distribution feature enables users to define individual quotas according to which calls are distributed to different destinations.
If a call is switched to a recorded announcement, the SSP acts like a fictitious communication party. The SSP supports network service-specific standard advisory messages and recorded announcements that can be controlled as call destinations. The individual recorded announcements have a limited number of attendant consoles. If all attendant consoles are busy, the excess calls are rejected. Each message is limited by a maximum playback time and number of repetitions.
For most of the IN services, e.g., FPH, UNU, TIS, and TV without the pre-counting function, the function of the intelligent network is to translate the dialed IN number to a real number as a function of defined service parameters in the traffic routing program. This is done according to the following main sequence:
1. The SSP evaluates the first few digits in the dialed telephone number and detects the IN service. The SSP sends a PROVIDE INSTRUCTION message to the SCP asking how this call is to be handled. The message contains the IN subscriber number dialed by the service user (CALLED PARTY ADDRESS) and the caller's telephone number (CALLING PARTY ADDRESS

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Simulator for simulating an intelligent network does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Simulator for simulating an intelligent network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simulator for simulating an intelligent network will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3162834

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.