Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science
Reexamination Certificate
1999-06-03
2001-05-08
Oda, Christine (Department: 2862)
Data processing: measuring, calibrating, or testing
Measurement system in a specific environment
Earth science
C702S014000
Reexamination Certificate
active
06230101
ABSTRACT:
BACKGROUND OF THE INVENTION
The subject matter of the present invention relates to a simulator software method and apparatus, embodied in an earth formation reservoir simulator, for simulating an earth formation reservoir containing liquids and/or gases by solving a system of linear equations that characterize physical aspects of an oil and/or gas field, the amount of time required by the reservoir simulator to solve the system of linear equations and to thereby simulate the earth formation reservoir being reduced relative to prior art simulation methods practiced by prior art simulators.
Oil and gas is produced from underground rock formations. These rocks are porous, just like a sponge, and they are filled with fluid, usually water. This porous characteristic of rocks is known as porosity. These rocks in addition to being porous have the ability to allow fluids to flow through the pores, a characteristic measured by a property called permeability. When oil (or gas) is trapped in such formations, it may be possible to extract it by drilling wells that tap into the formation. As long as the pressure in the well is lower than that in the rock formation, the fluids contained in the pores will flow into the well. These fluids may then flow naturally up the well to the surface, or the flow up the well may have to be assisted by pumps. The relative amounts of oil, gas and water that are produced at the surface will depend on the fraction of the rock pore space that is occupied by each type of fluid. Water is always present in the pores, but it will not flow unless its volume fraction exceeds a threshold value that varies from one type of rock to another. Similarly, oil and gas will only flow as long as their volume fractions exceed their own thresholds.
The characteristics of the rock (including porosity and permeability) in an oil reservoir vary greatly from one location to another. As a result, the relative amounts of oil, gas and water that can be produced will also vary from reservoir to reservoir. These variations make it difficult to simply predict the amount of fluids and gases a reservoir will produce and the amount of resources it will require to produce from a particular reservoir. However, the parties interested in producing from a reservoir need to project the production of the reservoir with some accuracy in order to determine the feasibility of producing from that reservoir. Therefore, in order to accurately forecast production rates from all of the wells in a reservoir, it is necessary to build a detailed mathematical model of the reservoir's geology and geometry.
A large amount of research has been focused on the development of reservoir simulation tools. These tools include mathematical and computer models that describe and which are used to predict, the multiphase flow of oil and gas within a three dimensional underground formation (a “field”). Reservoir tools use empirically acquired data to describe a field. These data are combined with and manipulated by mathematical models whose output describes specified characteristics of the field at a future time and in terms of measurable quantities such as the production or injection rates of individual wells and groups of wells, the bottom hole or tubing head pressure at each well, and the distribution of pressure and fluid phases within the reservoir.
The mathematical model of a reservoir is typically done by dividing the reservoir volume into a large number of interconnected cells and estimating the average permeability, porosity and other rock properties for each cell. This process makes use of seismic data, well logs, and rock cores recovered when wells are drilled. Production from the reservoir can then be mathematically modeled by numerically solving a system of three or more nonlinear, partial differential equations describing fluid flow in the reservoir.
Computer analysis of production from an oil reservoir is usually divided into two phases, history matching and prediction. In the history matching phase, the past production behavior of the reservoir and its wells is repeatedly modeled, beginning with initial production and continuing up to the present time. The first computer run is based on a geological model as described above. After each run, the computer results are compared in detail with data gathered in the oil field during the entire period of production. Geoscientists modify the geological model of the reservoir on the basis of the differences between computed and actual production performance and rerun the computer model. This process continues until the mathematical reservoir model behaves like the real oil reservoir.
Once a suitable history match has been obtained, production from the oil reservoir can be predicted far into the future (sometimes for as long as 50 years). Oil recovery can be maximized and production costs minimized by comparing many alternative operating plans, each requiring a new run of the computer model. After a field development plan is put into action, the reservoir model may be periodically rerun and further tuned to improve its ability to match newly gathered production data.
When sufficient data is obtained about the reservoir, characteristics of a reservoir can be mathematically modeled to predict production rates from wells in that reservoir. The gross characteristics of the field include the porosity and permeability of the reservoir rocks, the thickness of the geological zones, the location and characteristics of geological faults, relative permeability and capillary pressure functions and such characteristics of the reservoir fluids as density, viscosity and phase equilibrum relationships. From this data, a set of continuous partial differential equations (PDEs) are generated that describe the behavior of the field as a function of time and production parameters. These production parameters include the locations of wells, the characteristics of the well's completions, and the operating constraints applied to the wells. Operating constraints may include such as the production rate of a particular fluid phase, the bottom hole pressure, the tubing head pressure, or the combined flow rates of a group of wells. These constraints may be applied directly by data or by means of another simulator that models the flow of fluids in the surface equipment used to transport the fluids produced from or injected into the wells. However, because only the simplest system of PDEs can be solved using classic or closed-form techniques (e.g., a homogeneous field having circular boundaries), a model's PDEs are converted into a set of non-linear approximations which are then solved numerically. One approximation technique is the finite difference method. In the finite difference method, reservoir PDEs are converted into a series of difference quotients which divide a reservoir into a collection of discrete three dimensional cells, which are then solved for at discrete times to determine (or predict) the value of reservoir characteristics such as pressure, permeability, fluid fractions, and at a later time.
Within the computerized reservoir simulator, reservoir performance is modeled in discrete increments of time. Each so-called timestep advances the solution from a previous point in time, where all variables are known, to a future point in time, where all variables are unknown. This process is repeated until the entire time period of interest has been modeled. Within each timestep it is necessary to solve a huge system of nonlinear equations that models fluid flow from cell to cell and through the wells. (With current technology it is possible to include several million cells in the reservoir model.) Solutions to the system of nonlinear equations are obtained by Newton iteration. In each such iteration the system of nonlinear equations is approximated by a system of linear equations, which must be solved by yet another iterative procedure.
A general outline of the operation of a reservoir simulator follows (refer to
FIG. 8
a
). Reservoir data and rock core data are used to de
Bouchard John H
Oda Christine
Schlumberger Technology Corporation
Taylor Victor J.
LandOfFree
Simulation method and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Simulation method and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simulation method and apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2559712