Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...
Reexamination Certificate
2002-09-27
2004-06-08
Niland, Patrick D. (Department: 1714)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Processes of preparing a desired or intentional composition...
C264S073000, C264S076000, C264S077000, C523S219000, C524S401000, C524S425000, C524S437000, C524S442000, C524S513000
Reexamination Certificate
active
06747075
ABSTRACT:
Be it known that I, John T. Nardi, a citizen of the United States, residing at 109 Grassland Drive, Gallatin, Tenn. 37066; James P. Harper, Jr., a citizen of the United States, residing at 609 Baton Rouge Ct, Hermitage, Tenn. 37076; have invented a new and useful “Simulated Limestone and Method of Producing the Same.”
BACKGROUND OF THE INVENTION
Simulated stones have been used to enhance the appearance of the external cladding surfaces of buildings. As a means of background, the following information generally describes the features and characteristics of simulated or artificial stone or decorative displays that are currently in use. However, the currently known information does not solve the problems which have been solved by the present invention.
Historically, carved limestone has been a preferred material for trim surrounds, fireplaces, and other architectural features, for use with brick or natural stone. Additionally, carved limestone is frequently used on commercial buildings and residential development projects. However, one of the major disadvantages of carved limestone is weight. As a result, it is very costly to ship, install, and handle by workmen, and depending upon the size, may require the use of machinery to lift it.
There have been many previous efforts to develop a suitable alternative that has the aesthetic advantages of the natural stone, but not the disadvantages. Some of these efforts include E.I.F.S. (Exterior Insulated Finish Sytems) made by Drvvit or Senergy, or pre-cast concrete made by Tannertone, or lamenated foam by Fypon. Each of these products attempt to provide the advantages of limestone but sacrifice either design flexibility, structural integrity, or long-term durability.
An example of another previous effort is U.S. Pat. No. 6,054,080, to Sheahan et al., the contents of which are incorporated herein by reference in its entirety. This patent discloses a casting produced from a mixture of graded aggregates and a polyester resin binder.
Other examples of attempts are disclosed in U.S. Pat. No. 4,346,050, to Trent et al., U.S. Pat. No. 4,473,673, to Williams et al., U.S. Pat. No. 5,275,582, to Jones et al., U.S. Pat. No. 5,422,391 to Inoue, and U.S. Pat. No. 5,478,390 to Cruaud et al.
The Trent patent is directed to an improved concrete product having a very low viscosity (no more than about 50 centipoise) polyester resin binder so that the concrete will have higher strength and other improved properties such as high modulus of elasticity, low thermal expansion and contraction, better fire resistance and low shrinkage on curing. The improved concrete product disclosed in this patent is intended for use in the production of pre-cast elements for architectural or engineering applications in building construction. In order to achieve different surface appearances for various architectural uses, the surface of the concrete product described in this patent can be treated or etched with any solvent for the polymer binder so that an exposed aggregate effect is obtained.
The Williams patent is concerned with the production of a simulated or cultured marble product, and mixes an unsaturated polyester resin having a viscosity of about 300-600 centipoise (CPI) with a solid filler material such as calcium carbonate and then subjects the composition to a three step process, i.e., evacuating, vibrating and shearing under carefully controlled and limited conditions. The resulting product has a smooth, glossy surface finish and is particularly suitable for use in making countertops, bathroom sinks, table tops, lamps, etc.
The Jones patent is concerned with a simulated stone product for use as a basic building component and uses a resin binder with sodium chloride particles, pigments and other fillers to yield desired aesthetic effects. The mixture is cast in a mold that has been coated with a gel coat to produce countertops, sinks, tubs, etc. The resulting product has a glossy surface finish, and because of the use of sodium chloride has a high degree of whiteness.
The patent to Inoue describes a method of making a high density artificial stone having physical properties similar to those of natural stone, e.g., marble. In producing his product, Inoue molds a mixture of natural stone particles with calcium carbonate filler and a resin binder. Various colors may be given to the finished product by using colored particulate materials, or introducing pigments. The surface of the cast product is processed with an organic solvent to remove resins. Alternatively, the surface may be given an uneven texture by scraping the surface with a wire brush or the like, or spraying it with a high pressure water jet.
The patent to Cruaud relates to a process of making cuttable concrete having hardness and other properties permitting its use in ways that conventional concrete may be used, but having the additional property of being cuttable with conventional sculpting tools. After it is cast, the concrete product may be sandblasted to imitate the external appearance of a natural stone.
Finally, other examples include the following, all of which are incorporated by reference in their entirety: U.S. Pat. No. 4,235,948, to Holmes, U.S. Pat. No. 6,028,127, to Yanagase et al., U.S. Pat. No. 5,244,941, to Bruckbauer et al., U.S. Pat. No. 5,762,864, to Park, U.S. Pat. No. 6,132,820, to Callahan, U.S. Pat. No. 4,043,826, to Hum, U.S. Pat. No. 5,055,327, to Baskin, U.S. Pat. No. 4,956,030, to Baskin, U.S. Pat. No. 5,634,307, to Larriberot et al., U.S. Pat. No. 5,787,667, to Sheahan et al., and U.S. Pat. No. 5,473,851, to Northrup, Jr.
What is needed, then, is a simulated limestone which feels and looks like real limestone, which overcomes the currently existing problems identified. Additionally, what is needed is a method of producing such simulated limestone with repeatable quality, time efficiency, and in a cost effective manner. Finally, what is also needed is a method of achieving a surface texture which provides a simulated limestone appearance with a matted, or duller, finish having an enhanced appearance of natural limestone. Additionally, what it is needed is the ability to provide various earth-tone type colors.
SUMMARY OF THE INVENTION
This invention relates to the field of synthetic architectural detailed components for the commercial and residential industry including all related architecturally designed features. Preferably, the components of the present invention simulate limestone. The present invention is designed to provide the benefits and features of simulated limestone and overcome many of the problems that exist in the field today.
Products of the present invention include synthetic architectural detailed components, and more particularly to exterior trim components for residential, commercial, or industrial buildings. Preferably the components of the present invention simulate limestone by look, feel and color.
The present invention additionally discloses a method of producing a simulated limestone, and a method of achieving a matted, or dull, surface texture, surprisingly similar to natural limestone. Each method results in the production of a product with an enhanced appearance of natural limestone. Briefly, the method of producing simulated limestone comprises providing a mold, and pouring a formulation of a polymer based resin system with various fillers, aggregates, and pigments into the mold.
The method of achieving a surface texture comprises utilizing a 15 lb density foam material, or equivalent. The foam material is machined to have the desired engineered shape in order to provide a male model, also referred to herein as a model. In certain embodiments, the model is then enclosed with a wood framing material such that the top remains exposed. The male model is prepared to receive a polyurethane rubber material, as commonly known in the art. The polyurethane rubber is poured over the male model until the male model is covered and the enclosed box is completely full. In general, the polyurethane rubber is poured approximately an 1½″ over the top s
Harper, Jr. James P.
Nardi John T.
Cultured Trim, Inc.
Niland Patrick D.
Waddey & Patterson
LandOfFree
Simulated limestone and method of producing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Simulated limestone and method of producing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simulated limestone and method of producing the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3338286