Simple and inexpensive high-capacity output catch tray for...

Typewriting machines – Sheet or web – Including sheet guide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C271S219000

Reexamination Certificate

active

06832865

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a document reproduction apparatus and in particular to a simple and inexpensive high-capacity output catch tray for document production devices such as copiers, printers and fax machines.
BACKGROUND OF THE INVENTION
A. High Capacity Output Stacking Trays
In the prior art of output trays there has generally been an association of large, complex and expensive high volume copiers with similarly large, complex and expensive high capacity output collecting devices such as elevator trays, collators, sorters, vertically repositionable sheet output ports, and “mailbox” systems. In part this is because high volume copiers often must be capable of being coupled to subsequent machines in a production line, requiring that the top of the output stack be maintained at a relatively precise elevation for pickup by the next machine in the production line. However, where subsequent processing is not necessary there has previously been no simple, inexpensive, high capacity output stacking tray system available as a final station for such high volume copiers which did not suffer from various drawbacks addressed by the present invention.
Similarly, there has been an association of smaller, slower, and less expensive copiers with small, fixed, limited capacity output trays. High capacity output trays or systems with elevators or multiple trays generally either been unavailable for such smaller machines, or are too expensive to be suitable for the typical uses of such machines.
In all types of document production machines such as copiers, printers and fax machines, but particularly copiers for high speed, high volume production runs, the production of sheets by the copier can often exceed the capacity of presently available output catch tray systems. High capacity output trays, often referred to in the art as “stackers,” are particularly desirable for the collected output of high speed or plural job batching copiers or printers. High capacity stackers are also desirable for the accumulated output of unattended plural user (networked) copiers and printers, of any speed.
Further by way of background on sheet stacking difficulties in general, outputted sheets are usually ejected into an output tray from above one side thereof. Normal output stacking is by ejecting sheets or sets of sheets from above one side of the top sheet of the stack of sheets onto which that additional ejected sheet or set of sheets must also stack. Typically, sheets or sets are ejected generally horizontally (or slightly uphill initially) and continue to move horizontally primarily by inertia. That is, sheets or sets in the process of being stacked are not typically effectively controlled or guided once they are released into the output tray. The sheets or sets fall by gravity into the tray to settle onto the top of the stack. However, such settling is resisted by the relatively high air resistance of the sheet or set to movement in that direction. Yet, for high volume copiers stacking must be done at high speed, so a long settling time is undesirable. Thus, a long drop onto the stack is undesirable.
Stacking is made even more difficult where there are variations in thickness, material, weight and condition (such as curls) of the sheets. Different sizes or types of sheets, such as tabbed or cover sheets or Z-folded or other inserts, may even be intermixed in the stack. The ejection trajectory and stacking should thus accommodate the varying aerodynamic characteristics of such various rapidly moving sheets or sets. A fast moving sheet or set can act as a variable airfoil to aerodynamically affect the rise or fall of the lead edge of the sheet as it is ejected. This airfoil effect can be strongly affected by curls induced in the sheet, by fusing, color printing, etc. Therefore, an upward trajectory output angle and substantial release height is often provided, well above the top of the stack. Otherwise, the lead edge of the entering document can catch or snub on the top of the stack already in the output tray, and curl over, causing a serious jam condition. However, setting too high a document ejection level to accommodate all these possible stacking problems greatly increases the settling time for all sheets or sets and creates other potential problems, such as scattering.
Scatter within a stack causes at least four problems. First, if copier has a sets offsetting feature, intended to provide job set separations or distinctions, scatter within a stack makes such set distinction more difficult. Second, misaligned sheets or sets tend to incur damage such as bending, folding, abrasion or tearing of sheet edges out of alignment with the overall stack edge. Third, a substantial stack within which individual sheets are not well aligned to each other is more difficult for an operator to grasp and remove from the stacker. Fourth, a misaligned stack is not easily loaded into a box or other transporting container of corresponding dimensions.
For the above listed reasons, it may be seen that the top of stack elevation should be maintained within a desired range. A tray elevator or vertically repositionable sheet output port is therefore normally provided to maintain a relatively constant relationship of sheet output elevation to top of stack elevation for high capacity output trays.
Numerous means for dealing with various such general problems of sheet stacking are taught in U.S. Pat. Nos. 4,385,758, 4,469,319, 5,005,821, 5,014976, 5,014,977, 5,033,731, and art therein. Sheet “knock down” or settling assistance systems are known, but add cost and complexity and can undesirably prematurely deflect down the lead edge of the ejected sheet. Also, such “knock down” systems can interfere with sheet stack removal or loading and can be damaged thereby. Also, stacking systems should desirably provide relatively “open” trays, which will not interfere with open operator access to the output stacking tray or bin, for ease of removal of the sheet stack therein.
Many attempts have been made in the prior art to provide high capacity sheet stacking output trays. Among these are: U.S. Pat. No. 5,609,333 (describing a sheet stack height control system); U.S. Pat. No. 5,318,401 (describing a stacking tray system with nonvertically receding elevator yielding square stacks); U.S. Pat. No. 5,346,203 (describing a high capacity sheet stacking system with variable height input and stacking registration); U.S. Pat. No. 4,329,046 (describing a method for operating a reproduction machine with unlimited catch tray for multimode operation); U.S. Pat. No. 4,141,546 (describing a mini-collator/sorter); U.S. Pat. No. 4,012,032 (describing a sheet handling system with a receiving tray for use in non-collate mode and a plurality of collator bins for operating in collator mode); U.S. Pat. No. 4,026,543 (describing a control system using a copy count, a tangent copy count, and a document tracing indicator to provide automatic control for copy overflows); U.S. Pat. No. 4,134,581 (describing a system having multiple collator bins treated as one virtual bin).
In these systems there are generally two approaches to increasing output catch tray capacity. The first approach uses multiple receipt trays, bins or mailboxes (for simplicity, collectively referred to as “trays). The trays may be vertically or horizontally repositionable relative to a fixed output port, or the copier output port may be vertically or horizontally repositionable relative to a fixed tray or trays, or some combination of movable trays and moveable output port may be employed. However, although though multiple trays are in use, the individual trays generally have limited capacities requiring either additional control for tray switching, system shutdown or additional operator intervention.
In the second approach a single large output catch tray is used, but relatively powerful, complicated and expensive elevator mechanisms are required either to lower the catch tray or raise the copier output port as the stack grows in order to keep the top of the stack within an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Simple and inexpensive high-capacity output catch tray for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Simple and inexpensive high-capacity output catch tray for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simple and inexpensive high-capacity output catch tray for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3295716

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.