Coating processes – With post-treatment of coating or coating material – Heating or drying
Reexamination Certificate
2002-10-02
2004-08-31
Green, Anthony J. (Department: 1755)
Coating processes
With post-treatment of coating or coating material
Heating or drying
C008S115600, C106S287130, C106S287140, C252S008610, C252S008630, C252S008840, C252S008850, C427S412000, C524S198000, C524S261000, C524S265000, C524S266000
Reexamination Certificate
active
06783806
ABSTRACT:
The invention relates to compositions comprising a specific organopolysiloxane and additionally at least one polyurethane having blocked isocyanate groups. It further relates to the use of such compositions for treating fiber materials, especially textile fiber materials containing or consisting of wool.
It is known to treat woolen materials with polymeric compositions in order to control wool felting and shrinkage during washing. The polymers used for this purpose include polyurethanes. The disadvantage of any sole use of polyurethanes for the antifelt finishing of wool is that the hand level may deteriorate significantly as a result in many cases, especially when finishing certain grades of wool.
Silicones have similarly already been used to reduce the shrinkage of wool and hence also the tendency to felt during washing operations. By selecting suitable organopolysiloxanes it is possible to improve the hand of finished wool articles compared with a treatment with polyurethanes. Similarly, the use of organopolysiloxanes containing amino groups for finishing fiber materials is known, especially in those cases where the materials are to have a soft hand. If the wool is finished using compositions containing exclusively linear organopolysiloxanes, i.e., silicones which are not crosslinked and not crosslinkable, the effect of the antifelt or shrinkproofing finish is frequently not sufficient. It has been determined, for example, that compositions which contain only polydialkylsiloxanes or polydialkylsiloxanes having terminal hydroxyl groups do not provide the required performance level. Attempts have already been made to solve this problem by using compositions which, in addition to linear polysiloxanes, contain crosslinkable silanes or siloxanes. These crosslinking compounds contain silicon atoms with three or four reactive groups; examples thereof are alkyltrisalkoxysilanes. These crosslinking compounds can be incorporated in linear polydialkylsiloxanes to form crosslinked structures. The addition of such crosslinking compounds containing trifunctional silicon atoms improves the effect of the antifelt finishing of wool. However, it has been determined that the level of this finish is still not optimal in a number of cases if the systems used crosslink only after application to the wool article and are previously devoid of any crosslinking, i.e., contain no units of the hereinbelow mentioned formula (III).
The use of alkylhydrogenpolysiloxanes in crosslinking systems presents a problem in that safety precautions have to be taken because of the possible release of hydrogen. Because of the problems arising with the compositions mentioned, there are already silicones on the market which are already crosslinked to a certain degree, but are still further crosslinkable. Such polysiloxanes, as well as difunctional —SiR
2
O— units (R=alkyl), also contain trifunctional groupings in which 3 oxygen atoms at a time are attached to one or more silicon atoms. The terminal silicon atoms of the polysiloxane chains may additionally bear OH or OR groups to provide further crosslinkability. Such already precrosslinked polysiloxanes which are still further crosslinkable are in some cases already sufficient to provide better effects for an antifelt finish on wool articles than uncrosslinked silicones. However, there is still room for improvement even compared with such systems.
The treatment with silicones of textile fiber materials consisting of or containing wool is mentioned in a number of documents, for example in DE-A 31 49 680, which describes a two-stage process in which an aminoalkyl-containing polysiloxane can be used, optionally with addition of a crosslinking compound.
GB-A 2 082 215 describes a process for treating textiles made of wool with a composition of methylhydrogenpolysiloxane and a reaction product of epoxy resin and polyacidic amine.
DE-A 30 14 675 reveals a process for treating textile material with crosslinkable polysiloxanes. In this process, the fiber material is treated with an uncrosslinked silicone and a silane crosslinking agent.
DE-A 29 03 334 describes compositions for shrinkproofing wool using silicones which contain silicon atoms each with 3 oxygen atoms attached. The silicones further contain anionic groups.
DE 27 26 108 reveals a process whereby preparations for the shrinkproofing of wool can be prepared. Polysiloxanediols are mixed with aminodi- or trialkoxysilanes.
GB patent specification 1 436 694 treats of siloxane/silane mixtures for treating wool fiber materials.
CH patent specification 573 505 discloses compositions for the antifelt finishing of wool. These compositions contain reaction products of epoxides with basic polyamides. If these compositions are used not for treating wool but for conferring a water-repellent finish on other textile materials, they are said by this document to be combinable with silicone oil.
U.S. Pat. No. 3,876,459 describes mixtures of siloxane and silane which to some extent may have already reacted with one another, for wool finishing.
DE-A 19 38 555 discloses preparations of reaction products of epoxides with polyamides useful for the antifelt finishing of wool. If they are used for another purpose, namely for conferring a water-repellent finish on other fibers, they can be combined with silicone oils.
DE-A 22 53 939 discloses reaction products of epoxide, epoxysilicone and fatty amine which are further reacted exclusively with dicarboxylic acid or polyamidoamine. They are used for the antifelt finishing of wool.
U.S. Pat. No. 5,236,465 describes curable compositions of polysiloxane and aminosilane for the shrinkproofing of wool. To obtain satisfactory effects, the wool has to be subjected to a surface oxidation before finishing.
EP-A 315 477 likewise treats of silicone mixtures for finishing wool. The process likewise requires a prior oxidative treatment of the wool.
DE-A 28 44 952 describes preparations for shrinkproofing wool. These contain polysiloxanes having mercapto groups. Compounds containing sulfur in the oxidation state—2 have the disadvantage that their production and use, especially under the action of heat, may give rise to odor nuisance and the formation of volatile toxic compounds.
DE-A 28 04 983 discloses a process whereby a polymer is applied to wool and then cured with ionizing radiation. The polymer can be a polysiloxane.
DE-A 27 25 714 discloses silicone emulsions for treating keratin fibers. The emulsions contain polydiorganosiloxane, an organosiloxane having SIH bonds, emulsifier and sodium sulfate or magnesium sulfate.
DE-A 23 65 977 describes compositions for treating keratin fibers which contain an organopolysiloxane having terminal hydroxyl groups and certain tri- or tetrafunctional silanes or their condensates or partial hydrolyzates.
It is an object of the present invention to provide an improved composition for treating fiber materials, especially for treating textile sheet materials which contain wool or consist of wool. By virtue of this improved composition, the wool materials treated therewith shall have a significantly reduced tendency to felt or a distinctly reduced shrinkage during washing compared with untreated wool materials and these wool materials shall have a pleasantly soft hand after washing operations.
This object is achieved by a composition comprising at least a component A and a component B,
wherein component A is an organopolysiloxane whose terminal groups are of the formula (I)
X
3
Si—O— (I)
and which in the polysiloxane chain contains units of the formula (II) and units of the formula (III)
—SiR
2
—O— (II)
—SiR(OR′)—O— (III)
where all the R radicals are each independently a phenyl radical or an alkyl radical of 1 to 4 carbon atoms,
all the X radicals are independently R or OH or OR subject to the proviso that at least one of all the X radicals present is OH or OR,
R′ is
all the R″ radicals are independently R or
and m and n are each from 0 to 200, preferably from 0 to 50,
and component B is a polyurethan
Angele Theodor
Chrobaczek Harald
Howarth Lee
Lüdemann Simpert
Riedmann Jürgen
Ciba Specialty Chemicals Corporation
Green Anthony J.
Mansfield Kevin T.
LandOfFree
Silicone compositions for treating wool materials does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Silicone compositions for treating wool materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Silicone compositions for treating wool materials will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3305532