Silicone composition for bar soap applications

Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – Specific organic component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C510S130000, C510S141000

Reexamination Certificate

active

06197742

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to silicone additives for bar soaps.
BACKGROUND OF THE INVENTION
Soaps are widely used as skin cleansers, cleaning skin effectively and economically. However, they are not particularly mild. Soaps irritate skin, resulting in reddening, roughening and dryness. Therefore, materials which can counteract the irritating effects of soap, including moisturizers, synthetic surfactants and silicones are commonly included in the formulation of a soap bar.
Silicones have long been known to provide a light, silky feel on hair and skin. However, when silicones are incorporated in bar soaps, they have a tendency to wash off along with the soap, leaving no silicone residue on the skin. When silicones are added to bar soaps in the form of fluids, they tend to become emulsified and the emulsion is washed away with the lather of the soap. Therefore, even very viscous fluids fail to provide the sensory benefits of silicones when applied through bar soaps. Compositions containing silicones also show reduced lather formation.
Surprisingly, it has now been discovered that when a blend of a fatty alkyl modified silicone, a fatty silicate ester, a high viscosity fluid silicone, a silicone surfactant and a nonionic/cationic/anionic organic surfactant are incorporated in a bar soap, enough silicone is deposited on the skin surface to provide superior sensory benefits while maintaining the lathering and cleaning properties of the soap. Further, the film deposited is not highly stable, so an undesirable build up of silicone on the surface over time is avoided.
The present composition offers the flexibility to incorporate the silicones using nonionic, cationic and anionic surfactants in bar soap formulations based on very different oil-based raw materials. The composition can be used as an emulsion and added to soap noodles or converted to a granular additive with conventional fillers and added directly to soap during amalgamation. The practical difficulty of mixing high viscosity fluids during soap manufacture is therefore overcome.
The use of silicones in cleansing bar compositions has been disclosed in U.S. Pat. No. 5,154,849 to Visscher et al., issued Oct. 13, 1992 and in U.S. Pat. No. 5,661,120 to Finucane et al., issued Aug. 26, 1997. The silicones disclosed, however, are difficult to incorporate in a soap bar because of their high viscosity. The art does not suggest a blend of long chain substituted silicones and short chain substituted silicones with organic surfactants.
SUMMARY OF THE INVENTION
In one aspect, the invention relates to a composition for improving the surface deposition of silicones comprising: (a) 0.1 to 10 parts of a fatty alkyl silicone; (b) 0.1 to 10 parts of a fatty silicate ester; (c) 30 to 90 parts of a high viscosity lower alkyl silicone fluid; (d) 0.1 to 10 parts of a silicone surfactant; (e) 1 to 20 parts of an organic surfactant. The organic surfactant comprises one or more of: (a) a surfactant chosen from the group of nonionic, cationic and anionic surfactants; (b) a fatty ester sulfonate; (c) sorbitan monostearate; and (d) sodium lauryl sulfate.
DETAILED DESCRIPTION OF THE INVENTION
In its most basic aspect, the invention relates to a method for improving the surface deposition of silicone and a corresponding composition for a soap bar additive with improved deposition of silicone on the skin. The composition comprises: a high viscosity fluid silicone, a fatty alkyl silicone, a fatty silicate ester, a silicone surfactant, and an organic surfactant.
An essential component of the present compositions is a high viscosity fluid silicone which is present at a level which is effective to deliver a skin sensory benefit, for example, from 30 to 90 parts by weight, and preferably from 58 to 61 parts by weight per 100 parts of a soap additive composition. High viscosity fluid silicone, as used herein, denotes a silicone with viscosity ranging from about 5 to about 600,000 centistokes. Silicone fluids useful in the present invention may be polyalkyl siloxanes, polyaryl siloxanes, or polyalkylaryl siloxanes of suitable viscosity and molecular weight. The polyalkyl siloxanes that may be used herein include, for example, polydimethyl siloxanes. These siloxanes are commercially available, for example, from the General Electric Company as the Viscasil® series. The polyalkylaryl siloxanes that may be used include, for example, polydimethyphenyl siloxanes and poly (dimethyl) (diphenyl) siloxanes. These materials are also commercially available from GE Silicones. The preferred silicone fluids for use in these compositions are polydimethyl siloxanes with viscosities ranging from about 500 to about 100,000 cst.
The organic surfactants useful herein may be selected from cationic, anionic, and nonionic polymers suitable for contact with human skin. When used herein, the term ‘organic surfactant’ refers to a surfactant containing two or more carbon atoms covalently bonded and not containing any silicon. These components are generally present from about 1 to 20 parts per 100 parts of the additive composition, preferably from about 4.5 parts to 9 parts. Preferred anionic surfactants for use in the present compositions are sodium laureth-7 sulfate, commercially available as Sipon ES-7 by Alcolac and diethylene glycol monooleate, commercially available from Croda Chemical Ltd. as Cithrol DGMO S/E. Preferred cationic surfactants are dicocodimethylammonium chloride, designated M-Quat-2475 and manufactured by Mazer, and N-(3-chloroallyl) hexaminium chloride, commercially available as Cosept 200 from Costec, Inc. Preferred nonionic surfactants are the laurylether polyoxyethylenes commercially available as Brij 30 and Brij 35 by ICI India, and higher and lower molecular weight versions. The sodium salt of a sulfonated fatty ester with hydroxy end groups is commercially available as Eastman AQ 55 S from Eastman Chemical Co.
The compositions of the present invention additionally contain a fatty alkyl silicone and a fatty silicate ester. For the purposes of this invention, fatty is defined as a branched or straight alkyl chain of from ten to thirty carbon atoms. An example of a fatty alkyl silicone useful for the present invention is cetearyl methicone. A preferred fatty silicate ester is diisostearyl trimethylolpropane siloxy silicate. The fatty alkyl silicone may comprise 0.1 to 10 parts by weight per 100 parts of a soap additive composition, and preferably, about 1 part; the fatty silicate ester may also comprise 0.1 to 10 parts by weight per 100 parts of a soap additive composition, and preferably, about 1 part.
Suitable silicone surfactants for use in these compositions are commercially available from GE Silicones. These may include, for example, a mixture of cyclomethicone and dimethicone copolyol. The silicone surfactant may be present in the soap additive composition at 0.1 to 10 parts by weight per 100 parts of the soap additive, and preferably, at about 1 to 9 parts by weight.
The present compositions may optionally include a soap filler. Any of the standard fillers which are used in the manufacture of soap bars may be used. An example of a useful filler composition is soap powder/talc/treated silica. A filler may be included in the present compositions at levels from about 100 to 1000 parts by weight per 100 parts soap additive composition, and preferably 200 to 600 parts.
The soap of the present invention may be any of the widely-known alkali metal or alkanol ammonium salts of aliphatic alkane or alkene monocarboxylic acids, prepared by hydrolysis of vegetable oils to monoglycerides and subsequent saponification of the monoglycerides. Sodium, potassium, mono-, di-, and tri-ethanol ammonium cations, or combinations thereof, are typically used. The aliphatic acids generally contain about 12 to 22 carbon atoms, preferably about 12 to 18 carbon atoms. They may be described as alkali metal carboxylates of acyclic hydrocarbons having about 12 to about 22 carbon atoms.


REFERENCES:
patent: 4450152 (1984-05-01), Ona et al.
patent: 4609750 (1986-09-01), Ko

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Silicone composition for bar soap applications does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Silicone composition for bar soap applications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Silicone composition for bar soap applications will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2528006

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.