Optical waveguides – With optical coupler – Switch
Reexamination Certificate
2001-08-31
2003-11-04
Kim, Robert H. (Department: 2882)
Optical waveguides
With optical coupler
Switch
C385S037000
Reexamination Certificate
active
06643424
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a silicon oxynitride (SiON)/silicon dioxide (SiO2) optical waveguide switch with a wavelength locked feedback control. More particularly, the invention pertains to a silicon oxynitride (SiON)/silicon dioxide (SiO2) optical waveguide switch with a wavelength locked feedback control loop which monitors the wavelength of UV radiation produced by a UV tunable laser diffraction grating write source which has passed through a UV bandpass filter and is then used to selectively write a diffraction grating in the optical waveguide switch.
2. Discussion of the Prior Art
Silicon oxynitride (SiON)/silicon dioxide (SiO2) planar optical waveguide structures, such as those developed by IBM Zurich research labs, offer many advantages over conventional waveguide structures. One feature which has not yet been exploited is their sensitivity to ultraviolet (UV) radiation, which produces a change in their refractive index of light at infrared wavelengths propagating in the waveguide. It is thus possible to use UV light to write a diffraction grating pattern in the waveguide core.
Possible alternatives include the introduction of fluorophores or chromophores with matched absorption wavelengths for extending their UV sensitivity to write, erase or rewrite Bragg gratings in the core waveguide, or to create surface-corrugated gratings in conjunction with surface acoustic wave devices to create modulation structures or tunable grating structures.
The explanations herein discuss both wavelength and frequency, which have a reciprocal relationship (&lgr;=c/f, where c=speed of light), as is well known in the field of optics.
Wavelength Division Multiplexing (WDM) and Dense Wavelength Division Multiplexing (DWDM) are light-wave application technologies that enable multiple wavelengths (colors of light) to be paralleled into the same optical fiber with each wavelength potentially assigned its own data diagnostics. Currently, WDM and DWDM products combine many different data links over a single pair of optical fibers by re-modulating the data onto a set of lasers, which are tuned to a very specific wavelength (within 0.8 nm tolerance, following industry standards). On current products, up to 32 wavelengths of light can be combined over a single fiber link with more wavelengths contemplated for future applications. The wavelengths are combined by passing light through a series of thin film interference filters, which consist of multi-layer coatings on a glass substrate, pigtailed with optical fibers. The filters combine multiple wavelengths into a single fiber path, and also separate them again at the far end of the multiplexed link. Filters may also be used at intermediate points to add or drop wavelength channels from the optical network.
Ideally, a WDM laser would produce a very narrow linewidth spectrum consisting of only a single wavelength, and an ideal filter would have a square bandpass characteristic of about 0.4 nm width, for example, in the frequency domain. In practice, however, every laser has a finite spectral width, which is a Gaussian spread about 1 to 3 nm wide, for example, and all real filters have a Gaussian bandpass function. It is therefore desirable to align the laser center wavelength with the center of the filter passband to facilitate the reduction of crosstalk between wavelengths, since the spacing between WDM wavelengths are so narrow. In commercial systems used today, however, it is very difficult to perform this alignment—lasers and filters are made by different companies, and it is both difficult and expensive to craft precision tuned optical components. As a result, the systems in use today are far from optimal; optical losses in a WDM filter can be as high as 4 db due to misalignment with the laser center wavelength (the laser's optical power is lost if it cannot pass through the filter). This has a serious impact on optical link budgets and supported distances, especially since many filters must be cascaded together in series (up to 8 filters in current designs, possibly more in the future). If every filter was operating at its worst case condition (worst loss), it would not be possible to build a practical system. Furthermore, the laser center wavelengths drift with voltage, temperature, and aging over their lifetime, and the filter characteristics may also change with temperature and age. The laser center wavelength and filter bandwidth may also be polarization dependent. This problem places a fundamental limit on the design of future WDM networking systems.
A second, related problem results from the fact that direct current modulation of data onto a semiconductor laser diode causes two effects, which may induce rapid shifts in the center wavelength of the laser immediately after the onset of the laser pulse. These are (1) frequency chirp and (2) relaxation oscillations. Both effects are more pronounced at higher laser output powers and drive voltages, or at higher modulation bit rates. Not only can these effects cause laser center wavelengths to change rapidly and unpredictably, they also cause a broadening of the laser linewidth, which can be a source of loss when interacting with optical filters or may cause optical crosstalk. Avoiding these two effects requires either,non-standard, expensive lasers, external modulators (which are lossy and add cost), or driving the laser at less than its maximum power capacity (which reduces the link budget and distance). Lowering the data modulation rate may also help, but is often not an option in multi-gigabit laser links.
It would thus be highly desirable to provide a stable, optimal alignment between a laser center wavelength and the center of a Gaussian bandpass filter in order to optimize power transmission through such fiber optic systems and reduce optical crosstalk interference in optical networks.
SUMMARY OF THE INVENTION
Accordingly, it is a primary object of the present invention to provide a silicon oxynitride (SiON)/silicon dioxide (SiO2) optical waveguide switch with a wavelength locked feedback control loop which monitors the wavelength of UV radiation produced by a UV tunable laser diffraction grating write source which has passed through a UV bandpass filter and is then used to selectively write a diffraction grating in the optical waveguide switch.
The present invention concerns wavelength selective devices which encompass wavelength selective devices of all types including filters of all types including comb filters, etalon filters and rotatable disc filters and wavelength selective gratings of all types including Bragg gratings and array waveguide gratings.
It is an object of the present invention to provide a servo-control “wavelength-locked loop” circuit that enables real time mutual alignment of an electromagnetic signal having a peaked spectrum function including a center wavelength and a wavelength selective device implementing a peaked passband function including a center wavelength, in a system employing electromagnetic waves.
It is another object of the present invention to provide a servo-control system and methodology for WDM and DWDM systems and applications that is designed to optimize power through multi-gigabit laser/optic systems.
It is a further object of the present invention to provide a wavelength-locked loop for an optical system that enables real time alignment and tracking of any spectral device that selects a wavelength, such as a Bragg grating, in optical fibers and waveguides, etc., for use in WDM systems.
It is yet another object of the present invention to provide a servo/feedback loop for an optical system, referred to as a “wavelength-locked loop,” that enables real time alignment of a laser with variable optical attenuators by offsetting an optical filter from a known transmission in optical fibers and waveguides, etc.
It is yet a further object of the present invention to provide a servo/feedback loop for an optical system, referred to as a “wavelength-locked loop,” that
DeCusatis Casimer M.
Jacobowitz Lawrence
Kim Richard
Kim Robert H.
Scully Scott Murphy & Presser
Townsend, Esq. Tiffany
LandOfFree
Silicon oxynitride optical waveguide switch with wavelength... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Silicon oxynitride optical waveguide switch with wavelength..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Silicon oxynitride optical waveguide switch with wavelength... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3174316