Silica-reinforced tire tread rubber

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C152S209500

Reexamination Certificate

active

06350807

ABSTRACT:

BACKGROUND OF THE INVENTION
It is highly desirable for tires to exhibit good traction characteristics on both dry and wet surfaces. However, it has traditionally been very difficult to improve the traction characteristics of a tire without compromising its rolling resistance and tread wear. Low rolling resistance is important because good fuel economy is virtually always an important consideration. Good tread wear is also an important consideration because it is generally the most important factor which determines the life of the tire.
The traction, tread wear and rolling resistance of a tire is dependent to a large extent on the dynamic viscoelastic properties of the elastomers utilized in making the tire tread. In order to reduce the rolling resistance of a tire, rubbers having a high rebound have traditionally been utilized in making the tire's tread. On the other hand, in order to increase the wet skid resistance of a tire, rubbers which undergo a large energy loss have generally been utilized in the tire's tread. In order to balance these two viscoelastically inconsistent properties, mixtures of various types of synthetic and natural rubber are normally utilized in tire treads. For instance, various mixtures of styrene-butadiene rubber and polybutadiene rubber are commonly used as a rubber material for automobile tire treads. However, such blends are not totally satisfactory for all purposes.
The inclusion of styrene-butadiene rubber (SBR) in tire tread formulations can significantly improve the traction characteristics of tires made therewith. However, styrene is a relatively expensive monomer and the inclusion of SBR in tire tread formulations leads to increased costs.
Carbon black is generally included in rubber compositions which are employed in making tires and most other rubber articles. It is desirable to attain the best possible dispersion of the carbon black throughout the rubber to attain optimized properties. It is also highly desirable to improve the interaction between the carbon black and the rubber. By improving the affinity of the rubber compound to the carbon black, physical properties can be improved. Silica can also be included in tire tread formulations to improve rolling resistance.
U.S. Pat. No. 4,843,120 discloses that tires having improved performance characteristics can be prepared by utilizing rubbery polymers having multiple glass transition temperatures as the tread rubber. These rubbery polymers having multiple glass transition temperatures exhibit a first glass transition temperature which is within the range of about −110° C. to −20° C. and exhibit a second glass transition temperature which is within the range of about −50° C. to 0° C. According to U.S. Pat. No. 4,843,120, these polymers are made by polymerizing at least one conjugated diolefin monomer in a first reaction zone at a temperature and under conditions sufficient to produce a first polymeric segment having a glass transition temperature which is between −110° C. and −20° C. and subsequently continuing said polymerization in a second reaction zone at a temperature and under conditions sufficient to produce a second polymeric segment having a glass transition temperature which is between −20° C. and 20° C. Such polymerizations are normally catalyzed with an organolithium catalyst and are normally carried out in an inert organic solvent.
U.S. Pat. No. 5,137,998 discloses a process for preparing a rubbery terpolymer of styrene, isoprene and butadiene having multiple glass transition temperatures and having an excellent combination of properties for use in making tire treads which comprises: terpolymerizing styrene, isoprene and 1,3-butadiene in an organic solvent at a temperature of no more than about 40° C. in the presence of (a) at least one member selected from the group consisting of tripiperidino phosphine oxide and alkali metal alkoxides and (b) an organolithium compound.
U.S. Pat. No. 5,047,483 discloses a pneumatic tire having an outer circumferential tread where said tread is a sulfur-cured rubber composition comprised of, based on 100 parts by weight rubber (phr), (A) about 10 to about 90 parts by weight of a styrene-isoprene-butadiene terpolymer rubber (SIBR) and (B) about 70 to about 30 weight percent of at least one of cis 1,4-polyisoprene rubber and cis 1,4-polybutadiene rubber wherein said SIBR rubber is comprised of (1) about 10 to about 35 weight percent bound styrene, (2) about 30 to about 50 weight percent bound isoprene and (3) about 30 to about 40 weight percent bound butadiene and is characterized by having a single glass transition temperature (Tg) which is in the range of about −10° C. to about −40° C. and, further, the said bound butadiene structure contains about 30 to about 40 percent 1,2-vinyl units, the said bound isoprene structure contains about 10 to about 30 percent 3,4-units and the sum of the percent 1,2-vinyl units of the bound butadiene and the percent 3,4-units of the bound isoprene is in the range of about 40 to about 70 percent.
U.S. Pat. No. 5,272,220 discloses a styrene-isoprene-butadiene rubber which is particularly valuable for use in making truck tire treads which exhibit improved rolling resistance and tread wear characteristics, said rubber being comprised of repeat units which are derived from about 5 weight percent to about 20 weight percent styrene, from about 7 weight percent to about 35 weight percent isoprene and from about 55 weight percent to about 88 weight percent 1,3-butadiene, wherein the repeat units derived from styrene, isoprene and 1,3-butadiene are in essentially random order, wherein from about 25 percent to about 40 percent of the repeat units derived from the 1,3-butadiene are of the cis-microstructure, wherein from about 40 percent to about 60 percent of the repeat units derived from the 1,3-butadiene are of the trans-microstructure, wherein from about 5 percent to about 25 percent of the repeat units derived from the 1,3-butadiene are of the vinyl-microstructure, wherein from about 75 percent to about 90 percent of the repeat units derived from the isoprene are of the 1,4-microstructure, wherein from about 10 percent to about 25 percent of the repeat units derived from the isoprene are of the 3,4-microstructure, wherein the rubber has a glass transition temperature which is within the range of about −90° C. to about −70° C., wherein the rubber has a number average molecular weight which is within the range of about 150,000 to about 400,000, wherein the rubber has a weight average molecular weight of about 300,000 to about 800,000 and wherein the rubber has an inhomogeneity which is within the range of about 0.5 to about 1.5.
U.S. Pat. No. 5,239,009 reveals a process for preparing a rubbery polymer which comprises: (a) polymerizing a conjugated diene monomer with a lithium initiator in the substantial absence of polar modifiers at a temperature which is within the range of about 5° C. to about 100° C. to produce a living polydiene segment having a number average molecular weight which is within the range of about 25,000 to about 350,000; and (b) utilizing the living polydiene segment to initiate the terpolymerization of 1,3-butadiene, isoprene and styrene, wherein the terpolymerization is conducted in the presence of at least one polar modifier at a temperature which is within the range of about 5° C. to about 70° C. to produce a final segment which is comprised of repeat units which are derived from 1,3-butadiene, isoprene and styrene, wherein the final segment has a number average molecular weight which is within the range of about 25,000 to about 350,000. The rubbery polymer made by this process is reported to be useful for improving the wet skid resistance and traction characteristics of tires without sacrificing tread wear or rolling resistance.
U.S. Pat. No. 5,061,765 discloses isoprene-butadiene copolymers having high vinyl contents which can reportedly be employed in building tires which have improved traction, rolling resistance and abra

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Silica-reinforced tire tread rubber does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Silica-reinforced tire tread rubber, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Silica-reinforced tire tread rubber will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2982021

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.