Silica-alumina carriers preparation, hydrogenation catalysts...

Plastic and nonmetallic article shaping or treating: processes – Forming continuous or indefinite length work – Shaping by extrusion

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S621000, C264S623000, C501S012000, C502S235000

Reexamination Certificate

active

06479004

ABSTRACT:

The present invention relates to a process for preparing silica-alumina carriers and to hydrogenation catalysts prepared therewith. The present invention also relates to a process for the reduction of the aromatic hydrocarbons content in hydrocarbon streams.
Most of the liquid hydrocarbon products obtained by refining crude oil (distillates, gasolines, . . . ) contain levels of aromatic hydrocarbons which can be harmful for further use. Indeed, aromatics are known to reduce the cetane index of diesel fuels. Also, aromatics evaporating from hydrocarbons are more toxic than aliphatics. Finally, aromatics generate more smoke and more soot particles during combustion. Consequently, more and more environmental regulations are set up to limit the aromatics content in solvents or in transportation fuels.
The reduction of aromatics content in hydrocarbon streams can be carried out by catalytic hydrogenation on metal catalysts. However, most of the refining streams contain certain levels of sulphur and nitrogen compounds which are known as poison of these catalysts.
Group VIII transition metals such as Co or Ni supported on a carrier are very active catalysts, but in the presence of sulphur they are converted into inactive sulphides.
The use of Group VI-Group VIII bimetallic sulphides such as those of Ni—W or Ni—Mo can be found advantageous since their activity is less sensitive to sulphur. However, very high hydrogen pressures are required to observe significant aromatics conversion.
Noble metals such as Pt or Pd and alloys of noble metals deposited on a carrier are also known as active aromatics hydrogenation catalysts. The Applicants have already developed such hydrogenating catalysts as described in U.S. Reissue 26,883. However, these catalysts are based on low-alumina silica-alumina carriers. Further the shaping of such carrier requires a pelletising step. Said pelletizing step is slow, expensive and difficult to handle due to abrasion of the equipment; further by this method it is not possible to obtain catalyst particles with a diameter lower than 3 mm.
The need to use hydrocarbon streams, e.g. petroleum distillates, with lower and lower aromatics content is still requiring further improvements of hydrogenation catalysts.
It is an object of the present invention to provide for a silica-alumina carrier as well as a process for its preparation.
It is another object of the present invention to provide for an hydrogenation catalyst based on the silica-alumina carrier of the invention as well as a process for its preparation.
It is a further object of the present invention to provide for a hydrogenation process of hydrocarbon streams in the presence of the hydrogenation catalyst of the present invention.
According to the present invention, the silica-alumina carrier can be obtained by a process comprising the following steps:
(a) mixing an aluminum compound with a silicon compound to obtain a solution, said aluminum compound being chosen among aluminum alcoholate and aluminum carboxylate, and said silicon compound being chosen among silicon alcoholate and siloxane compounds;
(b) hydrolyzing the solution from step (a) under acidic conditions at a temperature comprised between 50° C. and 150° C.;
(c) cooling the mixture coming from step (b) in order to obtain a gel;
(d) processing the gel from step (c) to obtain a paste by eliminating the excess of volatile compounds such as acid and water;
(e) extruding the paste coming from step (d) under the form of extrudates;
(f) calcining the extrudates from step (e) at a temperature comprised between 300° C. and 700° C. for at least a few hours to remove the organic materials and moisture.
According to another embodiment of the present invention, the hydrogenation catalyst can be obtained by depositing one or more metals of Group VIII on the silica-alumina carrier of the invention.
The Applicants have unexpectedly found that it is possible to obtain a significant reduction of the aromatic hydrocarbon content of hydrocarbon streams when using the hydrogenation catalyst of the invention in a hydrogenation process.
The Applicants have now found that starting with an aluminum compound such as an aluminum alcoholate or an aluminum carboxylate and dissolving said aluminum compound into a silicon compound such as a silicon alcoholate or a siloxane compound to obtain a homogeneous solution, leads to beneficial results when the so-prepared support is used in the process of the invention.
The aluminum carboxylate is preferably a C
1
-C
4
carboxylate. As example of aluminum carboxylate, one can cite aluminum acetate, hydroxyaluminum diacetate and aluminum acetylacetonate.
As an example of a siloxane compound, one can cite polyalkoxy siloxane (preferably with 1 to 4 C
1
-C
4
alkoxy radicals per Si atom) such as e.g. polyethoxy siloxane having 1-9 Si atoms per molecule.
It has been found particularly suitable to use Al and Si alcoholates wherein each alcoholate group has from 1 to 4 carbon atoms. Generally, it is preferred to use Al isopropylate and Si(OEt)
4
or Si(OMe)
4
.
The solution obtained at step (a) preferably comprises from 8 to 40% by weight, preferably from 9 to 25% by weight and more preferably from 10 to 15% by weight of aluminum oxide versus total oxide (i.e. aluminum oxide+silicon oxide).
The hydrolyzing step (b) is preferably performed under weak acidic conditions (pH comprised between 2.5 and 4), for instance by pouring the solution from step (a) into acetic acid aqueous solution of 0.05 to 0.5 mole/liter. The hydrolysis is performed under stirring at a temperature comprised between 50° C. to 150° C. and preferably between 70° C. and 90° C.
According to the present invention the processing step (d) for preparing the silica-alumina carrier preferably consists of a drying step which is usually performed at a temperature comprised between 20° C. and 100° C., preferably between 50° C. and 80° C.
According to the present invention, step (e) can be performed either in an extruder to form extrudates or according to conventional pelletizing process. Preferably, the paste obtained at step (d) is processed in an extruder to form extrudates. Organic extrusion aids such as glycerol or methyl cellulose can be added to the mixture. According to a preferred embodiment of the present invention, these extrudates have a size lower than 3 mm, more preferably lower than 2 mm; this represents a great advantage because such processing was not possible with the prior art methods for preparing a low-alumina silica-alumina carrier. Indeed, the small size of the extrudates enhances the transportation of the reactants through the catalyst particles, and increases the volumetric activity for a given reactor.
In accordance with a preferred embodiment of the present invention, before the calcination step (f), the extrudates obtained at step (e) hereabove are allowed to dry between room temperature and 150° C.
The calcination temperature of step (f) is comprised between 300 and 700° C., preferably between 500 and 600° C.
According to another embodiment of the present invention the paste obtained at step (d) may also be blended with kaolin in an amount up to 10 parts for 100 parts silica/alumina; kaolin is added as an additional extrusion aid.
As indicated hereabove and according to another embodiment of the present invention, the hydrogenation catalyst can be obtained by depositing on the silica-alumina carrier of the invention one or more metals of Group VIII, preferably from 0.1 to 1.5 wt % in total.
The impregnation is preferably performed with a solution of one or more salts or complexes of noble metals of Group VIII. A salt or complex of platinum is preferred. More preferably the impregnation is performed by using an acidic complex of Pt, with the pH of the initial Pt complex solution being sufficiently low (<3, if possible<2) to favour Pt deposition while obtaining a good Pt distribution, but not too acidic to avoid carrier dissolution (>0.5, if possible>1). More preferably the impregnation is carried out by using an acidic H
2
PtCl
6
solution

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Silica-alumina carriers preparation, hydrogenation catalysts... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Silica-alumina carriers preparation, hydrogenation catalysts..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Silica-alumina carriers preparation, hydrogenation catalysts... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2993429

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.