Silent discharge lamp with controllable color

Electric lamp and discharge devices – With luminescent solid or liquid material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S581000, C313S584000, C313S586000, C345S103000, C345S067000, C345S022000, C315S169400

Reexamination Certificate

active

06696781

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a so-called silent gas discharge lamp. This term refers to gas discharge lamps that are designed for so-called dielectric barrier discharges. To that end, at least the anode(s) is or are separated by a dielectric layer from the gas fill that is used as the discharge medium. In the case of gas discharge lamps designed for bipolar operation, all the electrodes have dielectric barriers.
BACKGROUND ART
Silent discharge lamps are known per se. They are advantageous for various applications, including in particular the backlighting of displays in flat screens, etc. For this field of application, construction as a so-called flat panel lamp is known, in which the lamp consists essentially of two plane-parallel plates that can be connected via a frame and enclose the discharge medium between them. One of the two plates is in this case used as the light emission surface of the flat panel lamp.
These silent gas discharge lamps are preferably operated with a pulsed operating method, with which a particularly high efficiency can be achieved in the generation of light (UV light or, preferably, visible light when luminescent materials are used). The specifics of this operating method are also prior art and are familiar to the person skilled in the art, so that details need not be entered into here.
It is furthermore known to use, in a silent gas discharge lamp, an electrode arrangement divided into several groups, wherein the groups can be operated separately from one another. In this way, for example, it is possible to illuminate different areas of an instrument arrangement independently of one another, and to switch this illumination on and off for the different areas, with only one lamp being used in total. In this case, the various areas of the instrument illumination may be colored differently, i.e. luminescent materials or luminescent mixtures having different colors may be used. Reference is made to U.S. Pat. No. 6,388,374.
SUMMARY OF THE INVENTION
It is a technical object of this invention to extend the field of use and the possible applications of silent discharge lamps.
To that end, on the one hand, the invention provides a gas discharge lamp having a discharge vessel filled with a gas fill, and having a plurality of electrodes divided into separately operable groups, a dielectric layer between at least one anode part of the electrodes and the gas fill, and a luminescent layer, wherein the luminescent layer has elementary luminescent surfaces of at least two respective luminescent colors assigned to the electrode groups, the electrode groups and the elementary luminescent surfaces are in each case two-dimensionally interleaved relative to one another so that the light emission surface of the gas discharge lamp can essentially be lit using each electrode group on its own, and the gas discharge lamp is designed so that it is possible to control the color of the light emission by controlling simultaneous operation of the electrode groups.
The invention also concerns an operating method for such a gas discharge lamp, in which the electrode groups are operated simultaneously with a respectively controlled power, and the relative proportions of the light colors emitted by the luminescent materials are controlled in this way.
Preferred configurations are indicated in the respective dependent claims.
Lastly, the invention also concerns an image display device having a plurality of such gas discharge lamps, which will be discussed in more detail later in the description.
The basic idea of the invention is that the overall color of the light emission from the discharge lamp should be controllable, specifically as a color mixture comprising at least two colors of luminescent materials or luminescent mixtures. To that end, as is known per se, the electrodes are divided into groups that can be operated separately from one another. Each of the electrode groups is assigned to a luminescent surface, which forms an elementary surface of the overall light emission surface of the gas discharge lamp. This elementary luminescent surface is provided with a respective luminescent material or luminescent mixture, and generates a particular color during operation of the lamp. The operation of an electrode group hence entails emission of light with the assigned luminescent substance (mixture) color. In this case, however, the overall emission should have the effect of a color mixture, i.e. as far as possible during use, the individual elementary luminescent surfaces should no longer be resolvable by the observer's eye if the observation distance is appropriate or, in the case of diffusion, by diffuser elements of the discharge lamp or by reflection from illuminated objects or the like, to which end the positions of the electrode groups and the assigned elementary luminescent surfaces are interleaved relative to one another. How fine the structure of this positional interleaving should be depends on the special application. In any event, the elementary luminescent surfaces should not form self-contained separate compact blocks within the overall light emission surface of the gas discharge lamp, but rather should be multiply interdigitated or otherwise interleaved with one another in relation to this overall surface for light emission. In other words, it should be possible for the overall light emission surface to be essentially lit by each electrode group on its own.
With these measures according to the invention, one or other of the at least two luminescent colors can now be produced during operation of the lamp, and a color mixture can be produced therefrom by simultaneous operation. As it has moreover been found that silent discharge lamps of this type can be dimmed, which also applies to individual electrode groups, not only can a particular color mixture be generated by simultaneous operation of the electrode groups with the different luminescent colors, but this color mixture can also be varied continuously.
With regard to suitable dimming methods and measures expedient for this, reference is made to two prior patent applications by the same Applicant, to the content of which reference is made in relation to the power control in the individual electrode groups and also in relation to preferred features of the electrode structure within these electrode groups. They are, on the one hand, U.S. Pat. No. 6,376,989 and, on the other hand, WO 00/21116. To avoid making the present application unnecessarily long, the content of these cited applications will not be repeated. It is therefore assumed that, with suitable electrode structures, in particular those with a discharge gap that varies monotonically within so-called control lengths, the power of the lamp can be controlled continuously in relatively large ranges by varying parameters of the electrical power supply, in particular the voltage amplitude in the pulsed operating mode or the dead time between the pulses. In particular, by establishing particularly short discharge gaps in a part of the electrode pair and by an associated operating method with particularly long dead times, operation at very small power levels can further take place. In the present context, this is to be understood as meaning that an electrode group corresponding to a luminescent color may actually contain different discharge gaps, i.e. subgroups can be formed in connection with the dimming method.
In principle, the invention according to the aforementioned embodiments requires only two primary colors, with which it is possible to cover a color mixture spectrum extending as far as the pure primary colors. Greater configurational latitude is naturally obtained with a greater number of primary colors, in which case three primary colors with three electrode groups are in principle sufficient (the term “electrode groups” will be used below to denote the group division involved in the color control). The specifics of the allocation of particular luminescent materials to different primary colors and the details of the color mixing in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Silent discharge lamp with controllable color does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Silent discharge lamp with controllable color, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Silent discharge lamp with controllable color will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3315107

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.