Illumination – Supported by vehicle structure – Automobile
Reexamination Certificate
1998-11-03
2001-07-10
O'Shea, Sandra (Department: 2875)
Illumination
Supported by vehicle structure
Automobile
C362S140000, C362S141000, C362S540000, C362S545000, C362S544000
Reexamination Certificate
active
06257746
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a signalling assembly, and more specifically, to a signalling assembly which has particular utility when coupled with the controls of an overland vehicle, or the like, and which in one form of the invention operates as a combined directional signalling lamp and rear view mirror assembly.
DESCRIPTION OF THE PRIOR ART
The beneficial effects of employing auxiliary signalling assemblies have been disclosed in various United States patents, including U.S. Pat. Nos. 5,014,167; 5,207,492; 5,355,284; 5,361,190; 5,481,409; 5,528,422, and 5,788,357, all of which are incorporated by reference herein. The mirror assemblies disclosed in the above-captioned patents employ semitransparent mirrors, some of which are dichroic, and which are operable to reflect a broad band of electromagnetic radiation, within the visible light portion of the spectrum, while simultaneously permitting electromagnetic radiation having wavelengths which reside within a predetermined spectral band to pass therethrough. In this fashion, the dichroic mirror remains an excellent visual image reflector, that is, achieving luminous reflectance which is acceptable for automotive and other industrial applications, for example, while simultaneously achieving an average transmittance which is commercially acceptable. Further, when these assemblies use dichroic mirrors, and the predetermined band pass region of the electromagnetic radiation is relatively narrow, that is, such as about 30 nanometers, average in-band transmittance of 80%, or more of the electromagnetic radiation, can be achieved, with peak transmittance in excess of 90% being common.
In U.S. Pat. No. 5,788,357, which issued on Aug. 4, 1998, the inventors disclosed a mirror assembly which utilizes a nondichroic semitransparent mirror which passes about 1% to less than about 8% of a broad band of visible light and which simultaneously reflects about 35% to about 58% of a broad band of visible light; and a light assembly positioned adjacent to the semitransparent mirror and which emits visible light which is passed by the semitransparent mirror, the luminous intensity of the mirror assembly being about 2 to about 20 candelas. Further, in U.S. Pat. No. 5,528,422, a plurality of mirror coatings were disclosed and which are operable to conceal an underlying sensor or light emitting assembly while simultaneously providing a neutrally chromatic appearance. These same mirror coatings simultaneously absorb wavelengths of electromagnetic radiation which may otherwise be transmitted into the mirror assembly and which would, over time, degrade or otherwise be harmful to the subassemblies which are concealed by the semitransparent mirror.
Still further, in U.S. patent application Ser. No. 09/123,047 and which was filed on Jul. 27, 1998, the inventors have disclosed a mirror assembly having a semitransparent mirror which passes about 1% to about 30% of a broad band of visible light, and which reflects less than about 80% of a broad band of visible light; and a light assembly positioned adjacent to the semitransparent mirror and which emits visible light which is passed by the semitransparent mirror, the luminous intensity of the mirror assembly being less than about 120 candelas. The teachings of this application are also incorporated by reference herein.
Yet further in U.S. patent application Ser. No. 09/166,561, filed Oct. 5, 1998, the inventor has disclosed a mirror coating which may be useful in similar applications. In this patent application a mirror coating is disclosed as comprising a primary region which reflects visibly discernible electromagnetic radiation, and a secondary region which passes a portion of the visibly discernible electromagnetic radiation while simultaneously reflecting a given percentage of the visibly discernible electromagnetic radiation, and wherein the average reflectance of the mirror coating is greater than about 50%. The teachings of this reference are also incorporated by reference herein.
While the devices disclosed in these patents and applications have realized some degree of commercial success, certain inherent physical characteristics of the earlier disclosed mirror assemblies have impeded manufacturing efforts to cost-effectively mass produce these same assemblies. For example, while the mirror coatings disclosed in U.S. Pat. No. 5,528,422 operate as described, the manufacturing difficulties and costs associated with producing these rather complex coatings with commercially available coating fabrication equipment has impeded the introduction of low cost products for the mass market.
Still further, many of the devices disclosed in the earlier patents comprise numerous subassemblies, including light control film, lenses, and other diffractive devices which are utilized to collimate or otherwise bend the light emitted by the underlying light emitting assembly in such a fashion so as to direct the light in a given orientation away from an observer's eyes and into a given field of view outwardly of an overland vehicle. While these devices have operated with success, the space occupied by these subassemblies, and the weight attributed to same, have in some operating environments, and under certain conditions, detracted from their usefulness.
Still other prior art devices have attempted to diverge from the teachings provided in the patents and applications noted above. These devices, however, when built in accordance with their teachings, have been unable to provide the same performance characteristics. An example of such prior art is the patent to Crandall, U.S. Pat. No. 5,436,741. Other prior art references describe devices which attempt to provide the same functional benefits as described in the earlier patents. These references describe all manner of mirror housing modifications where, for example, lamps are located in various orientations to project light into predetermined areas, both internally and/or externally of the overland vehicle and to further provide auxiliary signalling capability. Examples of such patents include U.S. Pat. Nos. 4,646,210; 4,916,430; 5,059,015; 5,303,130; 5,371,659; 5,402,103; and 5,497,306, to name but a few.
Other prior art references have attempted to provide a combined mirror and signalling assembly. These assemblies have employed a nondichroic, semitransparent mirror with same. Perhaps the most germane patent which discloses this type of assembly is the patent to Maruyama et al., U.S. Pat. No. 3,266,016. This reference is, however, devoid of any suggestion of how one could manufacture a device which would have acceptable reflectivity and an acceptable luminous output while avoiding the detriments associated with the build-up or accumulation of heat within the mirror housing; and further address the associated problem of space limitations within the same mirror housing. The heat problem discussed above, of course, is a by-product of the electrical lamps used with same.
In the present invention, the inventors have departed from the teachings of the prior art by providing a signalling assembly which utilizes a semitransparent substrate, and a light assembly which, in combination, produces a signalling assembly which has a luminous intensity which is commercially acceptable, while simultaneously maintaining an acceptable luminous reflectivity, and a substantially neutral chromatic appearance. The present invention further eliminates many of the subassemblies utilized in the previous prior art devices, thereby minimizing its overall thickness, and weight. This is all achieved in a device which can be manufactured in a cost-effective fashion, not possible heretofore, and which further has improved performance characteristics.
OBJECTS AND SUMMARY OF THE INVENTION
Therefore, one aspect of the present invention is to provide an improved signalling assembly.
Another aspect of the present invention is to provide a signalling assembly which may be manufactured and installed as original equipment on an overland vehicle and the like or which may be further manufa
Bukosky Allen A.
Lawrence Jason J.
Mathieu Daniel J.
Todd Daniel R.
K. W. Muth Company, Inc.
O'Shea Sandra
Ton Anabel M
Wells, St. John, Roberts Gregory & Matkin P.S.
LandOfFree
Signalling assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Signalling assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Signalling assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2567496