Communications: electrical – Traffic control indicator – Portable
Reexamination Certificate
2001-01-23
2004-03-30
Mullen, Thomas (Department: 2632)
Communications: electrical
Traffic control indicator
Portable
C340S463000, C340S636100, C340S815400, C340S908100
Reexamination Certificate
active
06714140
ABSTRACT:
FIELD OF THE INVENTION
This invention pertains to a signal light which has two major fields of utilization.
A first and very important field of utilization is as a train “caboose”, where the light is installed in the rear part of a train to give a visual signal of itself by means of flashes of light to show that a train is moving up ahead.
Another field of utilization is highway signalling, where the light is incorporated in beacons and signs, in single or multiple form; or it is used individually, but in association or combination with other similar ones. In order to give an effective notice, it is usual to operate again with flashes of light; and on the other hand, this results in greater lifetime for the available power.
PRIOR STATE OF THE ART
With regard to the train “caboose” light, it should be pointed out that this is an essential safety element which has to operate at all times, so that the train has to halt if its signal function fails.
Therefore, the train caboose light cannot be supplied from the train's own electrical power supply or electrical generator, but instead should have an independent power supply source based on an electric cell.
An electric cell has a larger or smaller capacity, yet a finite one, and therefore a traditional problem with train “caboose” lights is to check the discharge of the electric cell in order to carry out a replacement before the light no longer works or begins to function defectively.
A known system consists in always having available a replacement cell to carry out the replacement when an indicator for this purpose denotes that the cell being used has a low charge.
This system is hardly operative for a safety element as important as the one in question, since it leaves no response safety margin, and it cannot be predicted when the moment of replacement will occur, which may be halfway in the middle of a trip; furthermore, it requires constant attendance by individual persons who will take turns in this duty, so that any mix-up may result in a serious safety problem, in addition to the logistical problem of always having available a spare electric cell to replace the one merely used up in the “caboose” light.
Another known and more sophisticated system consists in using a high-capacity (several months operating life) main alkaline battery and a secondary or auxiliary battery as an emergency spare with a much lower capacity (a few hours of operation); these main and secondary batteries are in a buffer layout and have an associated electronic monitoring, so that when the main battery is used up it automatically places the secondary battery in service and activates a light indicator which shows the need to replace the main battery and gives a warning that the operating life of the secondary battery is available to accomplish this. In this system, the replacement of the main battery also implies the replacement of the secondary battery in order to have a new operating cycle available with the original emergency reserve capacity intact for this secondary battery.
This system enables a greater response capacity than the preceding one, but is still far from desirable and continues to pose not insignificant logistical problems.
In regard to the second major field of utilization, that of highway signalling, it should be pointed out that there presently exist signal lights which, like those devoted to signalling of road work or obstacles to traffic, are powered by electrical cells, since this is the most suitable for units which are needed at any given moment and in locations where there is usually no outlet connected to the power supply network, and which need to be continuously transported from a stockpile to the place of utilization, or from one place of utilization to another.
The importance of these signs being permanently in perfect condition of use is critical to traffic safety.
Nevertheless, the means used at present have a tendency to malfunction, and this even though requiring especially careful attention on the part of the workers, or perhaps precisely because they require such attention.
At present, the signal lights in question are outfitted with a single cell or with various cells connected in series or in parallel which, by their very nature, have an imprecise duration, due to their great dependency on many intrinsic and environmental factors.
In such circumstances, in order to guarantee the perfect and permanent functioning of the signal lights in their installation, one must make sure that the cell or cells are fully charged at the start of use and that there is an individual checking of the installed cells so as to replace them before they are used up.
This checking is greatly dependent upon human resources which, in addition, have scant and uncertain response time, and are subject to constant shift changes, that is, changing of the specific persons entrusted with this; therefore, there is a considerable risk of failure of monitoring. On the other hand, the level of safety which demands a proper performance of this monitoring results in replacement of the cells with a medium level of discharge, which entails a wasting of energy, and translates into an oversized park of cells and a continual replacement of them before they reach an optimal level of discharge. This results in a substantial increase in the maintenance cost. On the other hand, this monitoring also involves a considerable cost of maintenance labor, due to the frequency of replacements and the need to dispatch people on purpose for this job.
EXPLANATION OF THE INVENTION AND ITS ADVANTAGES
Given this state of affairs, this invention proposes a new and special design of signal light, which consists of two electrical cells, a first and a second one, both identical to each other and each one having the necessary capacity to last for a standard operating cycle, which by means of a bistable switch are electrically connected to an electronic control circuit in stable alternative and nonalternating fashion until they are individually depleted, which electronic control circuit has one output connected to one corresponding signal light and another two outputs connected to individual light indicators, a first and a second one, which are light emitting diodes (LED), respectively assigned to said first and second electrical cells and activated by said electronic control circuit when the latter detects a depletion of the electrical energy of same.
The operation of this new signal light is as follows: when one of the electrical cells, for example the first one, is depleted, the electronic control circuit then causes the bistable switch to connect to the other electrical cell, for example the second one, while at the same time activating the LED diode corresponding to the depleted cell, in this case, the first one; we now have at our disposal another complete standard operating cycle in the second electrical cell in order to carry out the replacement of the first, now depleted electrical cell; since we have a bistable switch, that is, one which is stable in its two alternative connection positions (to the first electrical cell or to the second electrical cell), during the time that the first depleted cell is replaced by disconnecting it and connecting a new one said bistable switch remains in its position of connection to the second cell until the latter is depleted; at this moment, the original second cell is acting as the previous first cell and when it is used up the reverse of the foregoing process will occur, that is, the bistable switch will change to its position of connection to the now second and previously first cell, while at the same time activating the second LED diode to indicate that the now first and previously second cell has to be replaced.
Given the fact that each of the two cells is capable in themselves of furnishing a duty of several months (standard operating cycle), the application of this recommended light as a train “caboose” provides very considerable advantages, namely: availability of an emergency standby period as long as a standard operating
Celaya, Emparanza Y Galdos, S.A. (CEGASA)
Mullen Thomas
Nields & Lemack
LandOfFree
Signal light for railroads or the like does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Signal light for railroads or the like, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Signal light for railroads or the like will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3279977