Side facing multi-passenger divan assembly

Chairs and seats – Crash seat – Bottom and back movable as unit in response to force

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C244S12200B

Reexamination Certificate

active

06412864

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a side facing, multi-passenger divan assembly to be installed within an aircraft so as to provide for the comfortable seating of two or more passengers. More in particular, the divan assembly of the present invention is configured to achieve a substantially strong yet lightweight assembly, and to meet the stringent safety and impact requirements for aircraft use set forth by the Federal Aviation Association (FAA), which are enforced utilizing a variety of specialized test procedures and criteria.
2. Description of the Related Art
In the field of art relating to aircraft interiors, and in particular, to custom aircraft seating, seating devices referred to as divans are typically employed to accommodate one or more passengers within the aircraft. Specifically, divans are generally couch-like structures whereby one or more passengers can comfortably sit in a less formal, customized environment different from that typically utilized in commercial, passenger aircraft. Moreover, as divans are typically installed within private jets and aircraft having a customized aircraft interior, the orientation of the divan within the aircraft can often vary, with many divans being installed in a side facing orientation.
Despite the extensive customization available for aircraft interiors, including the varied use of seating structures such as divans, to develop a relaxed, attractive and/or functional environment, all articles used within aircraft interiors must still qualify as airworthy pursuant to the uniform regulations of the FAA. As a result, each installed article must undergo extensive FAA certifications and testing before they are authorized for utilization on an aircraft. To this end, the FAA is continuously updating and/or enhancing its test procedures directed towards newly installed components, often increasing the required criteria for passing a test to well above those levels set for prior devices.
Along these lines, two significant test procedures which divans, and in particular side facing divans, must undergo and pass, either independently or simultaneously, include: (i) the “pitch and roll deformation” test, wherein the divan must not fail under certain specified pitch and roll conditions, and (ii) the “longitudinal impact” test, wherein passenger to passenger contact must be avoided upon the exertion of a longitudinal force on the divan. Indeed, these test procedures, as well as the many others, are continuously being updated, with the criteria required for passing the tests being continuously increased. As a result, it is becoming more and more difficult to provide a lightweight divan assembly which meets of all of the requirements of comfort, size and convenience, but which also passes all of the test criteria. Moreover, as the test procedures are generally defined independently from one another, in most instances a manufacturer seeking to develop a new seating design cannot merely develop a new seat design in response to only one test procedure and criteria of particular importance, but rather must take all test procedures and criteria into account in every new design. This is primarily because, in many instances, modifications designed to make an assembly pass with respect to one set of test criteria, will often result in failure as to other test criteria that had previously been passed by the basic design.
Looking in particular to the requirements associated with passing the longitudinal impact test and avoiding passenger to passenger contact, this test generally involves the positioning of a corresponding number of passenger-like models on a divan assembly in an appropriate seating location (i.e. two passenger models for a two passenger divan). The divan assembly is then propelled longitudinally towards a rigid stop, thereby resulting in the longitudinal impact and subjecting the divan assembly and the passenger models thereon to a longitudinal force. During such a test procedure, the responses of the passenger models are studied in order to identify the extent of contact between adjacently positioned passengers, ensuring that nothing more than incidental contact takes place. For example, in the most traditional divan assemblies, an arm rest structure is typically positioned and independently secured to the aircraft at opposite ends thereof. As a result, when the impact force is exerted on the divan assembly, the passenger model closest to the side of impact will generally be driven into the arm rest, which serves to restrain the forward motion of that passenger. The adjacent passenger model, however, is driven towards the first passenger model and as there is no intervening arm rest to restrain its forward motion, significant injuries could result to both passenger models. As a result, in order to pass the required FAA test criteria, it is necessary to provide a divan assembly which can effectively avoid anything more than incidental contact between the adjacent passenger models, while also taking into account other practical consideration, such as size and weight.
Accordingly, it would be highly beneficial to provide a side facing, multi-passenger divan assembly which is configured so as to minimize and/or completely avoid contact between adjacent passengers during an FAA longitudinal impact test, thereby passing the FAA test criteria. Still, however, it would also be beneficial to provide such an assembly which is not substantially oversized, so as to dramatically increase the overall weight thereof, which would make it impractical for use with the intended number of passengers and which would make the assembly more vulnerable to failure with regard to other test procedures. As can be appreciated in all aircraft, weight and sizing is of critical importance, as the aircraft cabin has limited dimensions and the weight thereof can directly impact the operation of the aircraft, including economic variables such as fuel consumption.
Looking to the second of the many FAA test procedures used at least for side facing divan type assemblies, namely the pitch and roll deformation test, the FAA test criteria required for passage of this test are directed particularly towards applying stresses to the divan assembly itself in order to determine its susceptibility to breaking and/or other failures under certain conditions. To this end, the pitch and roll test procedure typically required by the FAA involves the simultaneous deflection of a portion of the divan assembly to a predetermined pitch angle, along with the application of a predetermined amount of roll to another portion of the divan assembly. For example, in the currently utilized FAA test procedures for a side facing divan, the front end of the divan assembly is subjected to a 10 degree pitch deformation between a first and a second side thereof. Simultaneously, the rear portion of the divan assembly is subjected to a 10 degree roll. Moreover, in some instances, the deformed divan assembly may be subjected to an impact force.
To compound the difficulty of the above-described test procedures, the tests are conducted relative to the weakest configuration of the divan assembly, that is, to the “worst case scenario.” As a result, if the divan assembly is re-enforced merely so that it meets the required test criteria when positioned in a certain orientation, the FAA requirements necessitate that further testing be performed from a different orientation which has become the weakest configuration. Accordingly, the rigorous test requirements necessitate that the divan assembly be made to pass the FAA test criteria regardless of the orientation in which the divan assembly is positioned.
Again looking in detail to the pitch and roll deformation test, the primary purposes of such a test is to ensure that the components of the divan assembly do not fail, such as through breakage or other gross deformations defined by the FAA. As a result, this test procedure necessitates that the manufacturer sufficiently strengthen the divan assembly, while stil

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Side facing multi-passenger divan assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Side facing multi-passenger divan assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Side facing multi-passenger divan assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2874199

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.