Coating processes – Coating by vapor – gas – or smoke – Carbon or carbide coating
Reexamination Certificate
2001-07-16
2003-10-14
Meeks, Timothy (Department: 1762)
Coating processes
Coating by vapor, gas, or smoke
Carbon or carbide coating
C427S255270, C427S255280, C427S255393, C427S255394, C427S255400, C427S301000
Reexamination Certificate
active
06632477
ABSTRACT:
THE FIELD OF THE INVENTION
The present invention relates generally to methods of making a composite Si
x
C
y
N
z
composition, and tools containing such a composition. More particularly, it concerns the use of a vapor-liquid-solid process for making Si
x
C
y
N
z
compositions and tools.
BACKGROUND OF THE INVENTION
Abrasive tools are fundamental items which play a role in many industrial and commercial processes. Saws, drills, grinders, wire drawing dies, and other tools which provide an abrasive action such as cutting, drilling, or grinding have become essential in processes which require material removal. Superabrasives such as diamond and cubic boron nitride (cBN), are much harder than conventional abrasives, and therefore provide superior tool performance characteristics such as wear life and work precision in many instances. Further, many materials such as stone, asphalt, certain metals, and various types of rock or cement are incapable of feasibly being worked using conventional abrasives.
Only a small number of substances or compounds are considered to be “superabrasive,” including diamond and cubic boron nitride (cBN). Of the superabrasive materials known, diamond is by far the hardest with the others being significantly less hard. For example, while cBN is considered to be a superabrasive, its hardness is still only about one half that of diamond.
Unfortunately, because of the significant effort required to make or obtain superabrasive materials, prices of superabrasive tools may be prohibitively high. Hence, the acceptance and feasibility of superabrasives is generally limited only to applications in which less durable materials (i.e. conventional abrasives) would be unsuitable.
An additional disadvantage of abrasive materials which have a high carbon content, such as diamond or SiC, is that they are unsuitable for machining a variety of metal materials. Particularly, many metals such as titanium, zirconium, tungsten, iron, cobalt, and nickel are known to react with or dissolve carbon at high temperatures. Thus, only selected metals may be worked with diamond and SiC, such as aluminum, copper, and zinc. Therefore, because of its iron content, steel parts are generally worked using either the (cBN) or the conventional abrasive Al
2
O
3
.
As such, superabrasive materials which are economically feasible, and which may be used over a wide spectrum of industrial applications continue to be sought through ongoing research and development efforts.
SUMMARY OF THE INVENTION
Accordingly, the present invention provides a method of making a superabrasive composite material having the general formula Si
x
C
y
N
z
. In one aspect, such a method includes the steps of: depositing a metal containing catalyst on a substrate, heating the substrate to a temperature sufficient to melt the metal containing catalyst, decomposing single bond compounds containing Si, C, and N elements, and depositing the Si, C, and N elements from the single bond compounds onto the molten metal containing catalyst, in an amount sufficient to produce a composite Si
x
C
y
N
z
. Such a material may be crystalline or amorphous in form. Further, because of its extreme hardness, such a composite material may be incorporated into a variety of tools requiring super hard components, such as various cutting tools, grinding tools, dressing tools, and light emitting tools, and may present an economically feasible option to cBN or diamond.
There has thus been outlined, rather broadly, the more important features of the invention so that the detailed description thereof that follows may be better understood, and so that the present contribution to the art may be better appreciated. Other features of the present invention will become clearer from the following detailed description of the invention, taken with the accompanying claims, or may be learned by the practice of the invention.
DETAILED DESCRIPTION
Definitions
Before the present SiCN tools and methods are disclosed and described, it is to be understood that the present invention is not limited to the particular process steps and materials disclosed herein, but is extended to equivalents thereof as would be recognized by those ordinarily skilled in the relevant arts. It should also be understood that terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting.
In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set forth below.
The singular forms “a,” and, “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to a superabrasive tool containing “a superabrasive particle” includes one or more of such superabrasive particles, reference to “an element” includes reference to one or more of such elements, and reference to “the catalyst” includes reference to one or more catalysts.
As used herein, “formulation,” “composition may be used interchangeably.
As used herein, “compound” refers to a single substance which is formed by the combination of a plurality elements.
As used herein, “composite” refers a material produced by the combination of two or more distinct, yet structurally complimentary components, and which displays structural or functional properties not found in any of the individual components.
As used herein, “single bonding configuration” or “single bonding arrangement” refers to the single bond nature of the bonding arrangement between elements or atoms in a compound. Specifically, a compound with no more than a single bonding configuration contains only single bonds between the included atoms or elements. Such a compound would therefore contain no double or triple bonds between the atoms or elements contained therein.
As used herein, “crystal,” or “crystalline” refers to solid SiCN which is formed by a repeating, or substantially repeating, three-dimensional pattern of Si, C, and N elements having a substantially fixed distance therebetween.
As used herein, “amorphous” when used in connection with SiCN refers to a non-crystalline form of such a compound.
As used herein, “molten” refers to the liquid or semi-liquid state of a metal. Such state may be reached in a variety of ways known to those of ordinary skill in the art, such as heating, solvents, pressure, etc.
As used herein, “catalyst” refers to a substance which initiates or accelerates a chemical reaction. In one aspect, such a reaction may include the bonding of Si, C, and N into a composite material.
As used herein, an “effective amount,” and “sufficient amount” may be used interchangeably and refer to an amount of a material which, when included in a composition, is sufficient to achieve an intended compositional effect.
As used herein, “X,” “Y,” and “Z” each refer to a positive integer. As used in connection with a SiCN composite, such integers may represent whole or fractional numbers, which are actual or average values for the designated element of the composite compound.
As used herein, SiCN refers to a composite compound of silicone, carbon, and nitride. Such a composite compound may be either in a crystal form or an amorphous form. Further, the amount of each element in the composite compound may be represented by the use of X, Y, and Z as indicated above.
Concentrations, amounts, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited.
As an illustration, a range of “about 0.1 to about 25” should be interpreted to include not only the explicitly recited values of 0.1 and 25, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individua
Meeks Timothy
Thorpe North & Western LLP
LandOfFree
SiCN compositions and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with SiCN compositions and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and SiCN compositions and methods will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3114782