Active solid-state devices (e.g. – transistors – solid-state diode – Heterojunction device – Light responsive structure
Reexamination Certificate
2011-01-04
2011-01-04
Gurley, Lynne A (Department: 2811)
Active solid-state devices (e.g., transistors, solid-state diode
Heterojunction device
Light responsive structure
C257S438000, C257S466000, C257SE31063, C257SE31116
Reexamination Certificate
active
07863647
ABSTRACT:
An avalanche photodiode semiconductor device (20) for converting an impinging photon (22) includes a base n+ doped material layer (52) formed having a window section (72) for passing the photon (22). An n− doped material layer (30) is formed on the n+ doped material layer (52) having a portion of a lower surface (74) suitably exposed. An n+ doped material layer (32) is formed on the n− doped material (30). A p+ layer (24) formed on top of the n+ doped layer (32). At least one guard ring (26) is formed in the n− doped layer (30).
REFERENCES:
patent: 3959646 (1976-05-01), De Cremoux
patent: 4857982 (1989-08-01), Forrest
patent: 4904608 (1990-02-01), Gentner et al.
patent: 5654578 (1997-08-01), Watanabe
patent: 5843804 (1998-12-01), Su et al.
patent: 5866936 (1999-02-01), Hasnain et al.
patent: 6359322 (2002-03-01), Haralson et al.
patent: 6791124 (2004-09-01), Hiraoka et al.
patent: 6838741 (2005-01-01), Sandvik et al.
patent: 6936868 (2005-08-01), Hiraoka et al.
patent: 7009228 (2006-03-01), Yu
patent: 7091527 (2006-08-01), Yoneda et al.
patent: 2004/0245592 (2004-12-01), Harmon et al.
patent: 2005/0051784 (2005-03-01), Niigaki et al.
patent: 2006/0175529 (2006-08-01), Harmon et al.
patent: 2006/0249747 (2006-11-01), Shushakov et al.
J. Jackson, A. Morrison, D. Phelan, and A. Mathewson, “A Novel Silicon Geiger-Mode Avalanche Photodiode”, Proceedings IEDM, 32-2, 2002.
X. Guo, A. Beck, X. Li, and J. Campbell, “Study of reverse dark current in 4H-SiC avalanche photodiodes”, IEEE J. of Quantum Electron., vol. 41, No. 4, pp. 562-567, 2005.
P. Bhattacharya, “Semiconductor Optoelectronic Devices”, 2nd ed., p. 386, 1997, selected pages.
X. Guo, L. Rowland, G. Dunne, J. Fronheiser, P. Sandvik, A. Beck, and J. Campbell, “Demonstration of Ultraviolet Separate Absorption and Multiplication 4H-SiC Avalanche Photodiodes”, IEEE Photon. Technol. Lett., vol. 18, pp. 136-138, 2006.
A. Beck, B. Yang, X. Guo, and J. Campbell, “Edge Breakdown in 4H-SiC Avalanche Photodiodes”, IEEE J. of Quantum Electron., vol. 40, No. 3, pp. 321-324, 2004.
A. Beck, G. Karve, S. Wang, J. Ming, X. Guo, and J. Campbell, “Geiger Mode Operation of Ultraviolet 4H-SiC Avalanche Photodiodes”, IEEE Photon. Technol. Lett., vol. 17, pp. 1507-1509, 2005.
S. G. Sridhara et al., “Absorption coefficient of 4H silicon carbide from 3900 to 3250 A”, J. Appl. Phys., vol. 84, No. 5, pp. 2963-2694, 1988.
B. K. Ng et al., “Nonlocal Effects in Thin 4H-SiC UV Avalanche Photodiodes”, IEEE Transactions on Electron Devices, vol. 50, No. 8, 2003.
F. Yan, C. Qin, J. H. Zhao, and M. Weiner, “Novel technology for the formation of a very small bevel angle for edge termination,” in Mater. Sci. Forum, vol. 389-393, 2002, pp. 1305-1308.
“Silicon Processing for the VLSI Era, vol. 1—Process Technology” S. Wolf and R. N. Tauber, Lattice Press 1986.
Gurley Lynne A
Marsteller & Associates, P.C.
Miyoshi Jesse Y
Northrop Grumman Systems Corporation
LandOfFree
SiC avalanche photodiode with improved edge termination does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with SiC avalanche photodiode with improved edge termination, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and SiC avalanche photodiode with improved edge termination will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2713344