Si/SiGe superlattice structures for use in thermoelectric device

Batteries: thermoelectric and photoelectric – Thermoelectric – Electric power generator

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

136203, 257 15, H01L 3530

Patent

active

060606568

ABSTRACT:
A superlattice structure for use in thermoelectric power generation systems includes m layers of a first one of Silicon and Antimony doped Silicon-Germanium alternating with n layers of Silicon-Germanium which provides a superlattice structure having a thermoelectric figure of merit which increases with increasing temperature above the maximum thermoelectric figure of merit achievable for bulk SiGe alloys.

REFERENCES:
patent: 2588254 (1952-03-01), Lark-Horovitz et al.
patent: 2798989 (1957-07-01), Welker
patent: 3124936 (1964-03-01), Melehy
patent: 3259759 (1966-07-01), Giaever
patent: 3296033 (1967-01-01), Scuro et al.
patent: 3338753 (1967-08-01), Horsting
patent: 3342567 (1967-09-01), Dingwall
patent: 3356464 (1967-12-01), Hulliger
patent: 3626583 (1971-12-01), Abbott et al.
patent: 3674568 (1972-07-01), Caprarola
patent: 3873370 (1975-03-01), Hampl, Jr. et al.
patent: 4029520 (1977-06-01), Hampl, Jr. et al.
patent: 4261771 (1981-04-01), Dingle et al.
patent: 4361814 (1982-11-01), Soclof et al.
patent: 4368416 (1983-01-01), James
patent: 4457897 (1984-07-01), Stanley et al.
patent: 4469977 (1984-09-01), Quinn et al.
patent: 4620897 (1986-11-01), Nakajima
patent: 4644753 (1987-02-01), Burke
patent: 4664960 (1987-05-01), Ovshinsky
patent: 4786335 (1988-11-01), Knowles et al.
patent: 4847666 (1989-07-01), Heremans et al.
patent: 4855810 (1989-08-01), Gelb et al.
patent: 4869971 (1989-09-01), Nee et al.
patent: 4999082 (1991-03-01), Kremer et al.
patent: 5006178 (1991-04-01), Bijvoets
patent: 5021224 (1991-06-01), Nakajima
patent: 5051786 (1991-09-01), Nicollian et al.
patent: 5064476 (1991-11-01), Recine, Sr.
patent: 5156004 (1992-10-01), Wu et al.
patent: 5181086 (1993-01-01), Yoshida
patent: 5210428 (1993-05-01), Goosen
patent: 5288336 (1994-02-01), Strachan et al.
patent: 5415699 (1995-05-01), Harman
patent: 5436467 (1995-07-01), Elsner et al.
patent: 5448109 (1995-09-01), Cauchy
Journal of Electronic Materials, vol. 22, No. 9, Aug. 1993, pp. 1165-1172, XP000646076, Harman T.C., "Controlled P-Type Sb Doping in LPE-Grown Hgl-XCDXTE Epilayers." Pp. 1165-1172.
G.D. Mahan, et al., "Thermoelectric Devices Using Semiconductor Quantum Wells" 1994 J. Appl. Phys. vol. 76 (3), pp. 1899-1901. No Month Given.
X. Sun, et al., "Quantum Confinement Effects on the Thermoelectric Figure of Merit in Si/Si.sub.1 -.sub.x Ge System" 1997 Mat. Res. Soc. Symp. Proc. vol. 478. No Month Given.
L.D. Hicks, et al., "Experimental Study of the Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit" 1996 Physical Review B, vol. 53, No. 16. No Month Given.
L.D. Hicks, et al., "Thermoelectric Figure of Merit of a One-Dimensional Conductor" 1993 Physical Review B, vo. 47, No. 24. No Month Given.
T.C. Harman, et al. "High Thermoelectric Figures of Merit in PbTe Quantum Wells" 1996 Journal of Electronic Materials, vol. 25, No. 7. No Month Given.
Farmer, et al., "Sputter Deposition of Multilayer Thermoelectric Films: An Approach to the Fabrication of Two-Dimensional Quantum Wells" 1995, XIII Intl. Conf. on Therm., American Institute of Physics. No Month Given.
M. S. Dresselhaus, et al., "Prospects for High Thermoelectric Figures of Merit in 2D System," 1997 Mat. Res. Soc. Symp. Proc. vol. 478. No Month Given.
L. D. Hicks, et al., "Use of Quantum-Well Superlattices to Increase the Thermoelectric Figure of Merit: Transport and Optical Studies," 1995 Mat. Res. Soc. Symp. Proc. vol. 358. No Month Given.
L. D. Hicks, "Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit," 1993 Physical Review B vol. 47, No. 19. No Month Given.
T.E. Whall and E.H.C. Parker, "Preparation of Advanced Materials by Molecular Beam Epitaxy," in Proc. First Europe Conf. on Thermoelectrics, D.M. Rowe, ed. (Peter Peregrinus Ltd., London 1987) Chapter 5, pp. 51-63. No Month Given.
Katsuya Oda and Takashi Nakayama, "Effects of Interface Atomic Configurations on Electronic Structures of Semiconductor Superlattices," Jpn. J. Appl. Phys. 1992, vol. 31, Part 1, No. 8, pp. 2359-2368. No Month Given.
Kaoru Inoue, et al., "Electron Mobilities in Modulation-Doped A1.sub.x Ga.sub.i-x As/GaAs and Pseudomorphic A1.sub.x Ga.sub.i-x As/In.sub.y Ga.sub.i-y As Quantum-Well Structures," Physical Review B, 1993, vol. 47, No. 7, pp. 3771-3778. No Month Given.
Mark L. Biermann, et al., "Wave-Packet Theory of Coherent Carrier Dynamics in a Semiconductor Superlattice," Physical Review B, 1993, vol. 47, No. 7, pp. 3718-3717. No Month Given.
L.D. Hicks, et al., "Use of Quantum-well Superlattices to Obtain a High Figure of Merit from Non-Conventional Thermoelectric Materials" 1993 Appl. Phys. Lett. vol. 63(23), pp. 3230-3232. No Month Given.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Si/SiGe superlattice structures for use in thermoelectric device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Si/SiGe superlattice structures for use in thermoelectric device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Si/SiGe superlattice structures for use in thermoelectric device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1066891

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.