Shunt

Surgery – Devices transferring fluids from within one area of body to... – With flow control means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S010000, C604S008000

Reexamination Certificate

active

06585677

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to apparatuses for the treatment of hydrocephalus or the like, and more particularly relates to cerebrospinal fluid (“CSF”) shunts.
BACKGROUND OF THE INVENTION
CSF shunts are well known and used broadly to treat patients with chronic hydrocephalus. In simple terms, such shunts typically have an inlet located in the patient's brain, and an outlet into some portion of the body which can accept and expel the excess fluid. A detailed discussion of prior art CSF shunts can be found in Drake et al,
The Shunt Book
, ©1995 Blackwell Science, Inc. Massachusetts, (“Drake”) the contents of which are incorporated herein by reference.
More particularly, ventriculoperitoneal (“VP”) shunts are designed to drain CSF from the brain into the peritoneal cavity. VP shunts are used in a variety of medical conditions and are implanted in both young and old patients. Certain configurations of prior art VP shunts can include a ventricular catheter, a flow-valve that can be changed by an external magnet, and a tunneled abdominal catheter. Further discussion on this type of shunt can be found in Reinprecht A., et al., “The Medos Hakim programmable valve in the treatment of pediatric hydrocephalus.”,
Childs Nerv Syst,
1997 November-December; 13(11-12):588-93. The ventricular cather and flow-valve are inserted through a scalp incision. The major complications from these and other prior art shunts include infection, obstruction, disconnection, under draining, and over draining, all of which can lead to serious injury and even death. The symptoms of shunt failure and malfunction are nonspecific and include fever, nausea, vomiting, irritability and malaise. A patient presenting to a medical facility with such symptoms warrants a thorough radiological, laboratory, and occasionally a surgical evaluation. As known to those of skill in the art, insertion of CSF shunts requires a highly skilled surgeon or radiologist working under CT X-Ray guidance, but once inserted, such shunts are frequently prone to failure.
More recent shunts that attempt to overcome some disadvantages of older shunts include the use of telemetry, as discussed in Miyake H. et al., “A new ventriculpertoneal shunt with a telemetric intracranial pressure sensor: clinical experience in 94 patients with hydrocephalus”,
Neurosurgery,
1997 May; 40(5): 931-5 and Munshi H., “Intraventricular pressure dynamics in patients with ventriculopleural shunts: a telemetric study”,
Pedatr Neursurg,
1998 February; 28(2): 67-9 Despite the fact that Miyake and Munshi teach the use of telemetrics with shunts, the shunts taught therein are still prone to failure due to infection, blockages and other difficulties, such that failures of such shunts can still require complete replacement of the shunt.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a CSF shunt that obviates or mitigates at least one of the disadvantages of the prior art.
In an aspect of the invention, there is provided a shunt for draining cerebral spinal fluid comprising a first catheter for insertion into an area of the patient that has excess CSF, and for receiving CSF therefrom. The shunt also includes a second catheter for insertion into a drainage cavity for draining the CSF, and a master control unit for insertion into the patient in a biocompatible location. The master control unit interconnects the catheters via a catheter line, and has a regulator for selectively draining an excess of the CSF. The shunt also includes at least one access port intermediate the first catheter and the second catheter, and which is placed subcutaneously such that when the access port is inserted into the patient, the access port provides a point of access to the shunt for allowing a treatment a condition associated with the shunt without requiring the shunt's removal.
In a particular implementation of the first aspect, the CSF space is a ventricle.
In a particular implementation of the first aspect, the drainage space is one of the patient's peritoneum, pleural space or vascular space.
In a particular implementation of the first aspect, the biocompatible location is one of the patient's skull, chest cavity or abdomen.
In a particular implementation of the first aspect, the regulator is a mechanical flow-valve regulator.
In a particular implementation of the first aspect, the regulator is a microprocessor based valve-gauge assembly for determining when the CSF requires draining and allowing the CSF to drain from the ventricle to the drainage cavity.
In a particular implementation of the first aspect, the microprocessor based valve-gauge assembly has a normally-open position to allow a preset amount of drainage of CSF in the event of a power-failure to valve-gauge assembly.
In a particular implementation of the first aspect, the shunt further comprises a diagnostic unit for detecting abnormal metabolic activity within the patient, and a transmitter for delivering the activity to a receiver external to the patient.
In a particular implementation of the first aspect, the transmitter is operable to perform the delivery wirelessly to the receiver.
In a particular implementation of the first aspect, the transmitter includes a memory buffer for accumulating data from the diagnostic unit prior to the delivery,
In a particular implementation of the first aspect, the condition is a blockage and the at least one access port allows an introduction point of introduction of a blockage-ablation device within the catheter line for physically breaking-up the blockage.
In a particular implementation of the first aspect, the blockage-ablation device is a micro-catheter with a tip suitable for piercing the blockage.
In a particular implementation of the first aspect, blockage-ablation device is a radio-frequency ablation device.
In a particular implementation of the first aspect, the at least one access ports is mounted on an exterior of the master control, the control unit further having a fluid bladder accessible via the access port for injection of at least one solution for treatment of a condition.
In a particular implementation of the first aspect, condition a blockage and a solution for treatment thereof and injection via the access port is an anticoagulant or a thrombolytic.
In a particular implementation of the first aspect, the condition is an infection and a solution for treatment thereof and injection via the access port is an antibiotic.
In a particular implementation of the first aspect, the at least one access port includes a self-healing plastic membrane.
In a particular implementation of the first aspect, there at least two access ports and wherein one of the access ports is located on the catheter line intermediate the master control unit and the second catheter and wherein a second one of the access ports is located on the catheter line intermediate the first catheter and the master control unit.
In a particular implementation of the first aspect, the shunt further comprises a transmitter connected to the valve-gauge assembly for gathering pressure information therefrom, the transmitter for reporting the pressure information to a receiver external to the patient.
In a particular implementation of the first aspect, at least a portion of the shunt has an antibiotic coating.
A shunt for draining cerebral spinal fluid from the brain is provided. In an embodiment, the shunt includes a master control unit that is located in the abdomen, chest wall, in the skull, on the skull or other suitable location, which interconnects a first catheter and a second catheter that is typically located in the peritoneal cavity. In a specific embodiment, the master control unit is located in the abdomen, and includes a variety of intelligent features including at least one access port to allow the injection of solutions for the prevention or removal of blockages in the catheter, and/or antibiotics. Additionally, such ports can allow a radiologist (or the like) to navigate within the shunt to physically remove b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Shunt does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Shunt, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shunt will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3040300

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.