Short pulse optical parametric oscillator system

Optical: systems and elements – Optical frequency converter – Parametric oscillator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S022000

Reexamination Certificate

active

06757096

ABSTRACT:

BACKGROUND OF THE INVENTION
Short pulse optical parametric oscillators (OPO) are used as sources of short laser pulses whose wavelength can be tuned, e.g. for applications in optical measuring technology and time-resolved linear and non-linear spectroscopy. Trains of short pulses trains are obtained through synchronous pumping of the oscillator with a likewise mode-locked pump laser (see e.g. P. Loza-Alvarez et al., Journal of the Optical Society of America B, Volume 16, No. 9, pages 1553-1560 (1999)). This conventional procedure has a plurality of disadvantages. In practice, the repetition rate of the oscillator is usually equal to the repetition rate of the pump laser. Although sub-harmonics of the repetition rate are also possible, reduction of the amplification of the pulses and hence a higher threshold and lower output power of the oscillator are associated therewith. Oscillators are required having repetition rates in the range of e.g. 1 GHz. However, conventional mode-locked pump lasers have repetition rates of 80 MHz. This does not permit efficient matching. In addition, continuous-wave pump lasers cannot be used for pumping conventional short pulse OPOs although they are often available. Purchase of an expensive mode-locked laser is therefore necessary.
For actively mode-locked OPOs, high repetition rates are also difficult to achieve. Moreover, devices for active mode locking disadvantageously require special electronics (see e.g. S. A. Diddams et al., Optics Letters, Volume 24, No. 23, pages 1747-1749 (1999)).
SUMMARY OF THE INVENTION
The invention, as articulated in the independent claims, eliminates these disadvantages. In accordance with the invention, passively mode-locked optical parametric oscillators are implemented through use of a passive mode-locking (mode-coupling) method in the resonator and of a suitable continuous-wave laser. The mode-locking method can be a saturable absorber or a Kerr lens having low losses in the saturated state and with low power of the resonated wave, respectively. The oscillation threshold can be reached using a non-linear medium of high non-linearity and a powerful continuous-wave pump source.
The repetition rate of the mode-coupled pulse train is determined by the optical path length of the oscillator resonator and can be selected throughout a large range, in particular up to the GHz region. Advantageously, the repetition rate can be adjusted to different user applications through modification of the resonator by the user.
Users of short pulse lasers often use continuous-wave lasers, since they are required for pumping other continuous-wave lasers (e.g. a neodymium:Yttrium vanadate laser for pumping a continuous-wave titanium sapphire laser). The emission power and beam direction of continuous-wave lasers, in particular diode pumped continuous-wave lasers, are highly stable over time. These properties are advantageous since they have a positive effect on the corresponding properties of the radiation emitted by the oscillator and facilitate use. Diode-pumped continuous-wave lasers have high electrical efficiency, require little maintenance and are compact. These properties provide additional reasons for advantageous use in pumping short pulse optical parametric oscillators.
To avoid the consequences of the different phase speeds in the resonator at the wavelengths of the two parametrically generated waves (signal and idler wave), the resonator of the invention is a singly-resonant OPO. For high power applications, the reflectivity of the resonator for that wave (signal or idler wave) which is required for the application, is suitably chosen to be small. The peak output power and the average output power are considerably higher for the non-resonant wave than for the resonant wave.
In a preferred embodiment, the resonator is provided with a device which initiates the pulse formation in the resonator.
External initiation of the pulse formation may be advantageous in certain cases to reliably start the pulse train.
In a particularly advantageous embodiment, the compensating system comprises dispersion-compensating dielectric mirrors with particular dispersion properties which partially or largely compensate for the group velocity dispersion of other elements in the resonator. This system advantageously exhibits simplicity and compactness compared to e.g. prisms.
To generate very short pulses, the non-linear medium in the resonator must have a correspondingly large amplification bandwidth. For media with homogeneous non-linear coefficients, this width is determined, among others, by the dispersion of the refractive index. It can be increased by implementation of a suitable inhomogeneity of the non-linear coefficient. This can, in particular, be realized through use of a non-linear crystal whose non-linearity is spatially modified through a poling process. A suitable series of regions in the non-linear medium having high and low non-linearity, optimizes the shape and width of the spectral phase adjustment curve with respect to the pulse duration requirements.
In certain cases, the power of the pump laser is not sufficient to exceed the oscillation threshold of the OPO or to provide sufficient output power of the OPO, e.g. due to high losses in the OPO resonator or in consequence of low non-linearity of the non-linear medium. In these cases, the pumping power can be increased by resonant enhancement. Towards this end, the resonator is provided with mirrors of sufficiently large reflectivity at the wavelength of the pump laser. When using a single-frequency pump laser (of angular frequency &ohgr;
P
), either the length of the OPO resonator is continuously controlled by a control system such that one of its longitudinal mode frequencies is always in resonance with the frequency of the pump laser or the frequency of the pump laser is continuously controlled such that it is resonant with a mode frequency. In either case, a pumping power increase is produced and values greater than 10 can be obtained.
In an advantageous embodiment of the invention, a pump laser is used which emits at several longitudinal modes of the laser resonator. The optical length of the OPO resonator is thereby dimensioned to equal the optical length of the laser resonator or is a multiple thereof. A pumping power increase can thereby be obtained via a device which controls the length of the OPO resonator to a sufficiently precise degree that simultaneous resonance between a major portion of the longitudinal modes of the pump laser and corresponding longitudinal modes of the OPO resonator can be continuously maintained. In this configuration, the repetition rate of the OPO equals the frequency separation of the pump laser modes or a simple fraction thereof (½, {fraction (
1
/
3
)}, etc.).
In a further embodiment of the invention the saturable absorber is a saturable Bragg reflector. Saturable Bragg reflectors are particularly simple and advantageous saturable absorbers. They are mirrors made from artificially structured semiconductors. Their reflectivity in the saturated state is very high, up to approximately 99%. This keeps the loss in the OPO resonator small, as is required for a low pump threshold.
In a further embodiment of the invention, the non-linear medium is a periodically poled crystal with non-linear susceptibility of second order. Periodically poled crystals have a higher non-linearity than crystals which are phase-adjusted through double refraction, since with suitable period, larger coefficients of the non-linear tensor can be utilized. A high non-linearity advantageously reduces the pump threshold.
In addition to non-linear media of second order, non-linear media of third order can also be used to produce parametric amplification. These have the advantage that a considerably larger number of such materials is available. In this case, the mean frequencies of the signal and idler pulses &ohgr;
1
, &ohgr;
2
are constrained by 2&ohgr;
P
=&ohgr;
1
+&ohgr;
2
. An obvious extension would be the use of two continuous-wave pump sources of d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Short pulse optical parametric oscillator system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Short pulse optical parametric oscillator system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Short pulse optical parametric oscillator system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3341597

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.