Brakes – Internal-resistance motion retarder – Valve structure or location
Reexamination Certificate
2002-10-24
2003-12-16
Lavinder, Jack (Department: 3683)
Brakes
Internal-resistance motion retarder
Valve structure or location
C188S322220
Reexamination Certificate
active
06662913
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to hydraulic shock absorbers. More particularly, the present invention relates to an improved hydraulic shock absorber that is adapted for use with motor vehicle suspension systems and that includes additional valving that enhances the dampening characteristics of the shock absorber during low velocity movement of the piston assembly in the recoil or rebound stroke or motion direction.
Hydraulic shock absorbers have long been commonly used in motor vehicle suspension systems to absorb unwanted road caused vibrations that normally occur while the vehicle is being driven. Specifically, shock absorbers are generally connected between the body (the sprung mass) and the suspension (the unsprung mass) of the motor vehicle to dampen vibrations transmitted from the suspension to the body.
Hydraulic shock absorbers usually include a cylindrical tube (frequently known as the inner tube), that defines a cylindrical inner cavity. A piston assembly is slidably disposed in and is reciprocally movable within the inner cavity and serves to divide the inner cavity into two working chambers: a compression chamber; and a rebound chamber, both of which are filled with hydraulic fluid. A fluid reservoir communicates, through valving, with the working chambers, and is usually annularly defined between the inner tube and an outer tube which is concentrically mounted about the inner tube.
One end of the outer or reservoir tube, normally the end adjacent to the compression chamber, is closed by an end cap assembly that is usually connected to the vehicle suspension by a suitable connector. A piston rod extends through a seal assembly and end cap mounted in the other end of the inner tube. The inner end of the piston rod is connected to the piston assembly, and the outer end of the piston rod is connected to the vehicle body by a suitable connector.
The piston assembly typically includes valving that permits fluid to flow across the piston assembly between the working chambers as the piston assembly moves relatively within the internal cavity, that is, relatively with respect to the inner tube. More specifically, the valving limits the flow of fluid across the piston assembly and between the compression and rebound chambers during movement of the piston assembly in a compression stroke direction or in a recoil stroke (sometimes also called the rebound or extension stroke) direction. This provides a damping force that “smoothes” or “dampens” vibrations transmitted from the suspension to the body. This damping force is, in part, determined by the velocity or speed at which the piston assembly is moved in the inner tube in response to the external forces applied to the shock absorber.
Various different types of valves or valving components have been used with piston assemblies to affect the damping force characteristics of shock absorbers. When a shock absorber piston assembly moves in the recoil stroke direction, these generally include restrictors or restrictor openings, a blow-off valve and orifices or orifice slots. The restrictors are usually holes drilled in the neck of the piston assembly although they may also be drilled in the piston rod. The blow-off valve is usually spring biased closed against a valve seat. The orifices are usually a plurality of rectangular slots coined in the valve seat of the blow-off valve.
During the recoil stroke of a shock absorber, the restrictors are the primary means by which fluid enters the piston assembly from the rebound chamber. Fluid then flows either through the orifice slots, or through the blow-off valve—when that valve's spring biasing force has been overcome—to the compression chamber. At low velocities of the suspension (that is, at low recoil stroke velocities of the piston assembly) the orifice slots are the primary contributors by way of the damping characteristics. At intermediate recoil stroke velocities of the suspension, it is the blow-off spring's biasing force that primarily determines the damping characteristics. At relatively high velocities, it is the restrictor openings that determine the damping characteristics. The restrictor openings do, of course, function at all velocities, but the contribution of the restrictors is significantly higher at higher velocities. The contribution of each of these valves or valving components is also dependent on the size of the orifice slots, the diameter of the restrictor openings, and the biasing force on the spring that biases the blow-off valve to a closed position.
Also in the past, some “premium” shock absorbers had piston assemblies in which additional valving was utilized to provide a more “plush” feel at lower operating velocities of the suspension. In these premium shock absorbers, the blow-off valves included valve members, which were spring biased against a valve seat, and in this respect, these valve members were like the valve members used in non-premium shock absorbers. The valve members of the premium-brand shock absorbers were, however, different in that they had an internal thin, flexible disk. This disk normally assumed a flat position and, while in this position, a relatively small flow of fluid was permitted to pass through the blow-off valve member when the blow-off valve was otherwise spring biased closed. This flow through the blow-off valve disk was in addition to the flow through the orifices. Increased fluid flow, resulting from a higher piston assembly velocity, caused the flexible valve disk to assume a flexed, bent or curved position. When in its flexed position, the disk prevented this further fluid flow through the blow-off valve member. The disk assumed its flexed or closed position before the piston assembly velocity caused the blow-off valve to open against the force of its spring bias.
SUMMARY OF THE INVENTION
In principal aspects, the improved shock absorber of the present invention includes a further valve that enhances the damping performance of the shock absorber during low velocity movement of the piston assembly in the recoil stroke direction. This novel valve includes a second spring-loaded valve member that normally blocks the flow of fluid past or across the piston assembly downstream, so to speak, from the blow-off valve, that is, after the fluid has flowed through the orifices, and/or through the valve disk that has been used in some premium shock absorbers. This further valve provides an initial firmness to the suspension movement before the blow-off valve opens, and more specifically, offers a firmness vis-a-vis roll stability to the vehicle steering yet provides the desired “boulevard” or soft ride that is particularly desired by consumers.
An object of the present invention is to provide an improved shock absorber, as described, where the shock absorber is adapted for connection between the body of a motor vehicle and the suspension of the motor vehicle and serves to dampen vibrations transmitted from the suspension to the body while the vehicle is being driven.
Another object of the present invention is to provide an improved shock absorber, as described, that includes further valving, as described, and that affords advantageous firmness regarding vehicle steering roll stability, together with a boulevard or soft ride, during relatively low velocity movement of the piston assembly in the recoil stroke direction. A related object of the present invention is to provide an improved shock absorber, as described, where the shock absorber includes: an inner tube having a first fluid filled cylindrical internal or inner cavity, that has compression and extension ends and that has a longitudinal central axis extending between the compression and extension ends; a piston assembly that has a longitudinal central axis co-axial with the longitudinal central axis of the inner tube, that has a second internal chamber and a third chamber, that is disposed in and reciprocally moveable, within the internal first cavity, selectively in a recoil stroke direction and in a compression stroke direction, and that
Gabriel Ride Control Products, Inc.
Lavinder Jack
McAndrews Held & Malloy Ltd.
Nguyen Xuan Lan
LandOfFree
Shock absorber does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Shock absorber, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shock absorber will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3160963