192 clutches and power-stop control – Transmission and brake – Motor vehicle
Reexamination Certificate
2000-07-27
2001-12-04
Bonck, Rodney H. (Department: 3681)
192 clutches and power-stop control
Transmission and brake
Motor vehicle
C074S473180
Reexamination Certificate
active
06325196
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to shifters for transmissions of passenger vehicles, and more particularly relates to shifters having devices to control movement of the shift lever between gear positions.
Passenger vehicles in the United States have the driver's seat positioned in a front left side of the passenger compartment. The transmission shifter is typically positioned between the front vehicle seats for operation with the driver's right hand. However, passenger vehicles in many other countries, such as Japan, position the driver on the front right side of the passenger compartment. The shifter is often still positioned between the vehicle seats, but the shifter is located on a left side of the driver for left-handed operation. This can cause numerous problems in factories created to manufacture both left-hand drive and right-hand drive vehicles. For example, twice as many part numbers are created, one set for right-hand driven vehicles and one set for left-hand driven vehicles. Inventories increase dramatically because there are twice as many parts that must be inventoried. Further, twice as many tools and fixtures must be created and lower volumes of each parts are used, thus reducing efficiencies of manufacture while adding to storage costs. Also, there are significant advantages to postponing the decision as to which type vehicle (i.e., left-hand or right-hand drive) will be produced to as late in the assembly process. Further, there are advantages to being able to switch a vehicle from left-hand to right-hand style and vice versa with as few parts as possible. Thus, a shifter that uses a maximum of common parts is desired.
Modern vehicle shifters also have another problem. Modern vehicle shifters have park lock devices that lock their shift levers in the park gear position until predetermined vehicle conditions are met. For example, federal regulations require that a vehicle's brake pedal be depressed and an ignition key be turned on before a shift lever can be moved from its park gear position to a drive gear position. The reason for this is so that the vehicle is operational but braked before an operator shifts into gear. Also, modern vehicle shifters are now being specified or proposed with neutral lock devices and/or reverse lockout devices to prevent them from being accidentally shifted from drive gear position or neutral gear position into reverse gear position while the vehicle is moving forward at too great of speed. Some shifter systems are proposed that are constructed to prevent a transmission from shifting from drive gear position into reverse gear position while the vehicle is going too fast, but they typically do not prevent the shift lever itself from being accidentally moved into the reverse gear position. As a result, when the vehicle does slow down and the transmission is “unlocked,” the transmission drops with a sharp jolt into the reverse gear position. This can result in a potentially unsafe condition since the vehicle suddenly and unexpectedly operate. It is desirable to prevent the shift lever itself from being accidentally shifted from the drive gear position into the reverse gear position.
Several ways are known to provide a park lock. Often they use a solenoid to extend a pin into a pawl-engaging cam in a way that prevents a pawl from exiting a park notch. The solenoid is connected to a control circuit with a controller programmed to require that predetermined vehicle conditions be met before the solenoid is energized. As a result, a shift lever cannot be moved out of its park gear position until the predetermined vehicle conditions are met. For example, the predetermined vehicle conditions may include a requirement that the brake pedal be depressed.
Present proposals for neutral lock devices include a second solenoid not unlike the park lock solenoid. This second solenoid has an extendable pin that can be extended to engage a pawl-engaging cam in a way that prevents the pawl from moving from neutral toward the reverse or drive gear position unless predetermined vehicle conditions are met. A problem is that solenoids are expensive, and including two solenoids in a shifter results in a relatively expensive shifter assembly.
Some park lock devices utilize a cable connected to a vehicle component, such as to a brake pedal or actuator. The cable is connected to the shifter in a manner preventing shifting from park gear position until predetermined vehicle conditions, such as the ignition key being on, are met. However, cables are also expensive to purchase. Further, the cables must be routed in the vehicle and connected at each end, making them expensive to install. Further, it is not at all clear how such a construction could be made to provide a neutral lock function.
Accordingly, a shifter solving the aforementioned problems and having the aforementioned advantages is desired.
SUMMARY OF THE PRESENT INVENTION
In one aspect of the present invention, a shifter for shifting a vehicle transmission includes a base and a shift lever pivoted to the base for movement along a first path between first gear positions and pivoted for movement into and along second and third paths that extend parallel the first path on opposite sides of the first path. The shift lever is adapted to shift the transmission in a first manner when in the first path, and to shift the transmission in a second manner when in one of the second and third paths. A cover is attached to the base during assembly having slots configured to allow the shift lever to be moved into one of the second and third paths, but not the other of the second or third paths.
In another aspect of the present invention, a shifter for shifting a vehicle transmission between a plurality of gear positions includes a base having notches corresponding to the gear positions and a shift lever pivoted to the base for movement along a first path between the gear positions and pivoted for movement into and along a second path that extends parallel the first path. The shift lever is adapted to shift the transmission in a first manner when in the first path and to shift the transmission in a second manner when in the second path. The shift lever includes a pawl operably engaging the notches to control movement of the shift lever between the gear positions. A releasing member attached to the base is configured to engage and retract the pawl of the shift lever, causing the pawl to disengage the notches when the shift lever is moved to the second path.
In another aspect of the present invention, a shifter for shifting a transmission between park, reverse, neutral, and drive gear positions includes a base, a shift lever pivoted to the base for movement between the park, reverse, neutral and park gear positions, a control circuit adapted to sense vehicle conditions, and an electromechanical device on one of the base and the shift lever that is connected to the control circuit. The electromechanical device is configured to both lock the shift lever in the park gear position when a first set of vehicle conditions are met, and also to block the shift lever from moving from the neutral gear position until a second set of vehicle conditions are met.
In yet another aspect of the present invention, a method includes providing a shifter having a base and a shift lever on the base movable between a plurality of gear positions including a park position, a reverse position, and a neutral position, and includes providing a solenoid on one of the base and the shift lever. The method further includes operating the solenoid to lock the shift lever in the park position until first predetermined vehicle conditions are met, and later operating the solenoid to unlock the shift lever to allow the shift lever to move from the park position. The method still further includes, in a separate step after the shift lever has been moved from the park position, operating the solenoid to prevent the shift lever from moving from the neutral position until second predetermined vehicle conditions are met.
The
Beattie Dale A.
Brock Robert D.
DeJonge Robert A.
Bonck Rodney H.
Grand Haven Stamped Products Division of JSJ Corporation
Price Heneveld Cooper DeWitt & Litton
LandOfFree
Shifter with park lock and neutral lock device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Shifter with park lock and neutral lock device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shifter with park lock and neutral lock device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2561349