Shielding plate, in particular for optoelectronic transceivers

Electrical connectors – Electromagnetic or electrostatic shield – Shielding individually surrounding or interposed between...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S939000

Reexamination Certificate

active

06540555

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a shielding plate that is suitable, in particular, for optoelectronic transceivers and for optical connecting elements coupled to them. The shielding plate has a hollow body in the form of a casing and contact springs which are formed on the hollow body in order to make contact between the hollow body and a metallic structure.
It is known for optoelectronic transceivers to be connected to an optical network via optical plug connectors. In particular, a small type of so-called small-form-factor (SFF) transceiver is known, which is arranged on a printed circuit board. Infrared light is injected into and output from the transceiver via an adapter which is arranged on the housing of the transceiver and has a plug socket for an optical connector.
A transceiver of that type is illustrated in FIG.
3
. The transceiver
1
is disposed in a rectangular housing
11
and it can be plugged into a non-illustrated printed circuit board via pins
12
. The transceiver
1
has conventional optoelectronic transducers, such as a FP Laser or VCSEL laser, and a photodiode. Infrared light is injected and output between the transceiver
1
and the optical network via an adapter
2
, which is arranged on an opening formed on the front face of the housing
11
of the transceiver
1
. The adapter
2
has an opening
21
for holding an optical connector, so that an optical conductor can be connected to the transceiver
1
. The plug connection is thereby configured similarly to an RJ-45 plug connection.
For electromagnetic shielding against interference emissions, the adapter
2
has a surrounding shielding plate
3
, which is aligned with the housing
11
of the transceiver
1
and is optionally connected to it. For grounding, the shielding plate
3
is electrically connected via contact springs
31
to a non-illustrated metallic structure, for example the front panel of the housing which contains the board with the transceiver module
1
and further components.
In order to form the contact springs
31
, cutouts
32
are stamped in the shielding plate
3
, resulting in slotted structures in the shielding plate
3
. The slotted structures reduce the shielding effect of the shielding plate disadvantageously, as undesirable electromagnetic waves are output. This is based on physical principles, as are used in an analogous manner in waveguide technology for coupling waveguide structures through holes and slots.
An SFF transceiver as shown in
FIG. 3
is manufactured by Infineon Technologies AG of Germany and is commercially available under the part number V23818-N15-L17.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a shielding plate, in particular for optoelectronic transceivers, which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which effectively suppresses interference emissions in the form of electromagnetic waves and, in this context, prevents electromagnetic waves from being output and emitted.
With the foregoing and other objects in view there is provided, in accordance with the invention, a shielding plate, in particular a shielding plate for an optoelectronic transceiver component. The shielding plate comprises:
a hollow body formed as a casing with an end face; and
a plurality of contact springs formed as projections on said end face of said hollow body and bent back onto said hollow body.
In other words, the shielding plate according to the invention is distinguished by the fact that the contact springs are formed by projections which are arranged on the end face of the hollow body and are bent back onto the hollow body. Since the contact springs are linked to the hollow body on the end face, the invention allows the hollow body to be designed as an essentially continuous part which has no cutouts, slots etc., or only a limited number of cutouts, slots etc. This effectively prevents the outputting of electromagnetic waves and provides improved shielding.
The solution according to the invention provides the shielding plate with a chimney-like structure which does not allow any electromagnetic waves to be output through cutouts in the surface of the shielding plate and provides effective shielding against interference emissions.
It will be understood that, in the preferred refinement of the invention, the hollow body of the shielding plate is essentially in the form of a continuous part which has no cutouts, slots etc. However, the invention is also suitable for hollow bodies which also have slots or other cutouts, in which case the number of cutouts is at least reduced by the invention.
It will also be understood that, for the purposes of the invention, the term shielding plate means any desired shielding element which is distinguished by high conductivity both for direct current and for frequencies in the range up to 10 GHz, and which is thus suitable for use as a shielding element. As a rule, the shielding plate will be composed of a highly conductive sheet-metal material. However, other materials are also feasible.
The hollow body and the projections which form the contact springs are preferably designed integrally, that is to say as one part. This allows the shielding plate to be manufactured easily from one part.
Furthermore, the projections which form the contact springs are preferably in the form of comb-like, partial extensions of the cut-open hollow body. In consequence, hollow bodies and projections can be manufactured in a simple manner by stamping. Once a planar sheet-metal part which forms the hollow body and the projections has been stamped, the hollow body is bent to the desired hollow body shape and the comb-like projections are bent through 180° in the direction of the outer surface of the hollow body, thus producing the desired contact springs without the hollow body having any cutouts or slots.
The bent-back contact springs preferably touch the outer surface of the hollow body in a sprung manner in a region of the hollow body which faces away from the end face that is provided with the contact springs. This is, in particular, that region of the hollow body which is adjacent to the housing of a transceiver which is optionally connected to the hollow body or shielding plate respectively. Such a contact spring link advantageously results in a low-value contact resistance to the housing which holds the transceiver.
In accordance with an added feature of the invention, the hollow body has a web on one of its end faces, which web divides the opening which is formed through the hollow body on this end face. For symmetry reasons, the web is preferably arranged centrally in the opening in the hollow body. The use of a web further improves the chimney-like structure or shielding structure on the shielding plate, and thus the shielding for electromagnetic waves. In particular, the web reduces the outputting of electromagnetic waves through the opening in the hollow body.
The hollow body of the shielding plate is preferably in the form of a casing of a cuboid, that is to say it extends in a corresponding manner to the four longitudinal boundary surfaces of a cuboid. However, other hollow body shapes are feasible, depending on the shape of the region to be shielded. For example, the hollow body can likewise be in the form of a cylindrical casing.
In accordance with a preferred feature of the invention, an inner shielding plate is also arranged inside the shielding plate, makes electrical contact with the inner surface of the hollow body and, for example, shields an optical connector. The inner shielding plate is in this case used firstly to link a metallic LASER flange to the shielding plate and thus to dissipate any interference potentials that occur to the shielding plate. Secondly, the inner shielding plate reduces the effective opening of the “chimney” formed by the hollow body, and thus reduces the opening diameter of the nonmetallic aperture for the LASER and receiver flange. This increases the cut-off freque

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Shielding plate, in particular for optoelectronic transceivers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Shielding plate, in particular for optoelectronic transceivers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shielding plate, in particular for optoelectronic transceivers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3054723

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.