Electric heating – Microwave heating – Fluid heater
Reexamination Certificate
2001-02-15
2002-06-25
Leung, Philip H. (Department: 3742)
Electric heating
Microwave heating
Fluid heater
C219S710000, C219S720000, C219S729000, C219S732000, C426S088000, C426S241000, C116S216000, C374S149000, C099SDIG014
Reexamination Certificate
active
06410896
ABSTRACT:
BACKGROUND TO THE INVENTION
Microwave ovens are used in nearly 90% of U.S. households. The wide popularity of this appliance is well deserved since it delivers much of what is promised: faster and easier food preparation, cooler kitchens and easier clean-up.
An unexpected benefit of microwave cooking is that most types of burn injuries to children are much less frequent than from conventional ovens and stoves. There is, however, the disturbing finding of a class of injuries of increasing frequency with microwave oven use. These are burns to the oropharynx, palate and airway of infants fed from bottles that were heated in microwave ovens. Despite manufacturers' warning labels on baby bottle packages that discourage microwave heating and emphasize the potential risk, this problem persists.
There are several factors which contribute to this type of injury. Most significant are the uneven heating of the baby formula and the fact that the surface temperature is unrepresentative of the highest internal temperature. This situation would not result in burn injuries were it not for the caretaker's failure to take the necessary steps to ensure safe delivery; namely, inverting the bottle several times to mix the contents to achieve uniform temperature, and testing the temperature of the liquid by dispensing a few drops on his/her skin.
Reflective electrically conducting materials opaque to microwave radiation have been used to affect cooking performance in microwave ovens in three ways. One application of these shields is to achieve differential heating when a plurality of foods is heated or cooked in a microwave oven. U.S. Pat. No. 3,865,301 describes a shielded container, opaque to microwave radiation except for radiation-transparent windows, used to heat a sandwich-type food comprised of a plurality of ingredients to different extents.
U.S. Pat. No. 4,851,631 to Wendt describes a food container with a cylindrical aluminum foil shield that protects the ice cream on a brownie from microwave radiation while the brownie is being heated.
U.S. Pat. No. 4,233,325 describes a two-component package containing a microwave reflective material which protects the ice cream in one compartment while a refrigerated syrup contained in a microwave transparent compartment is warmed.
Another application of metallic shields is to reduce the amount of microwave energy reaching a frozen food product by a controlled amount. Often the shield is combined with a glossy microwave absorber material so as to cook the food primarily by conduction heating. This is accomplished by shielding the major portion of the food product within the container from microwave radiation, while utilizing a layer of microwave absorber in contact with the food which heats the food as it absorbs radiation. This application of a shield with a microwave absorber is intended to enhance the organoleptic properties of the food.
U.S. Pat. No. 4,703,148 describes a package with sides made of an aluminum foil shield having windows whose size, number, and location are selected so as to achieve the desired level of crispness and browness.
U.S. Pat. No. 4,190,757 describes a metal foil laminated to Kraft paper bonded to the inside surface of a cardboard box for an individual size pizza pie. A predetermined number of openings are made in the shield so as to control the heating to result in a pizza with improved texture and appearance.
U.S. Pat. No. 3,941,967 describes a cooking apparatus containing a metallic shield capable of scorching a food. U.S. Pat. No. 4,351,997 to Mattisson et al. describes a food package containing side walls and rim coated with aluminum foil capable of cooking a composite frozen food product in a microwave oven to an even temperature with slight variations from 65° C. to 80° C.
U.S. Pat. No. 4,661,672 to Nakanaga describes an oblong container for use in microwave ovens comprising a shielding layer which covers the top of the contents and at least the upper half of the side walls on the short ends of the container which is capable of preventing hardening and drying of the corners of the contents, and allowing the contents to be uniformly and effectively heated.
Still another application of metallic shields is to achieve even heating.
U.S. Pat. No. 4,703,149 to Sugisawa et al. teaches that the top portion of food heated in a microwave oven is irradiated from both the top and sides causing the food to be heated unevenly. In a container according to this invention, a shielding layer is provided through the intermediary of an air layer at a position of the container where the shield covers at least the region where the upper surface of the contents make contact with the side surface of the container. The inventors found that interposing of an air layer between the microwave shielding layer and the container proper further increased heating efficiency and remarkably decreased induction heating in the shielding layer. It is alleged that with this design, sudden local boiling of the contents, such as soup, can be prevented.
U.S. Pat. No. 5,370,883 describes a package in a tray form for microwave heating of foods that provides an aluminum laminate for covering the side wall which allegedly gives excellent temperature distribution in microwave ovens. Despite the significant number of patents on the application of shields in the heating of food in microwave ovens, the use of a foil reflector to microwave is clearly contraindicated in the technical literature. Shapiro and Bayne conclude their publication with “[f]oil labels covering a high percentage of the side wall area should not be used, since they prevent the penetration of microwave radiation through the jar and into the food, thereby inhibiting uniform heating.”
For a considerable time, manufacturers of microwave ovens have recommended that metallic shields not be introduced into microwave ovens because of potential damage to the magnetron and the potential for arcing that can damage the food package and char the food product. Arcing is a plasma arc discharge that produces a flash of light, a noise and sometimes ignition of the container.
The conductive shield can be a major source of arcing. Any discontinuity in the shield edge produces an intensification of the electric field emanating from that edge. At locations where the field strength is sufficiently large, an arc discharge will occur, and the heat produced in the arc may produce burning of adjacent portions of the food or the container. If the container is thermoplastic, it may deform or melt.
U.S. Pat. No. 3,865,301 to Potheir et al. describes design criteria for shielded containers to accomplish selective and controlled heating of foods in a microwave oven without arcing or charring. This patent teaches that it is desirable to reduce the number and sharpness of points in the conductive sheet. It also teaches that, in general, a conductive edge perpendicular to the shelf in a microwave oven is likely to produce arcing or charring. It further teaches that a single integral conductive sheet with no overlapped joints is more resistant to arcing than one piece with an overlapped joint.
U.S. Pat. No. 4,558,198 to Lenendusky discloses a metal container and system for arc-free microwave cooking and minimal reflection of electromagnetic radiation. These benefits are achieved, according to the disclosure, by means of structural refinements in a metallic container, including the provision of smooth, wrinkle-free side and bottom walls and edges, a physical geometry incorporating generous radii in lieu of sharp corners in the container structure, and a coating of heat-resistant plastic material of a specified film thickness on both sides of the walls and edges of the container to diffuse microwave radiation.
U.S. Pat. No. 4,345,133 to Cherney et al. describes a partially-shielded microwave carton constructed such that adjacent portions of the panels forming the cover wall are provided with a low impedance electrical connection at microwave frequencies to inhibit arcing between such panels during heating and r
Scarantino John W.
Witonsky Robert J.
Foley & Lardner
Kleinke Bernard L.
Leung Philip H.
Medical Indicators, Inc.
LandOfFree
Shielding method for microwave heating of infant formula to... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Shielding method for microwave heating of infant formula to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shielding method for microwave heating of infant formula to... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2956471