Shield connector and manufacturing method therefor

Electrical connectors – With circuit conductors and safety grounding provision – Grounding to conductive sheath of cable

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S616000, C439S095000

Reexamination Certificate

active

06524121

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a shield connector provided at an end portion of a shield wire and installed in a through hole, which is formed in a mating shield wall, and a manufacturing method therefor.
2. Description of the Related Art
An example of a conventional shield connector is manufactured by passing a shield wire through a metallic flange and setting the shield wire and the metallic flange in a mold for resin molding and forming a housing by using a synthetic resin with which the mold is filled.
Meanwhile, with such a configuration, the synthetic resin housing does not closely adhere to the metallic flange, so that a space is formed therebetween. Thus, a hot melt adhesive or a liquid gasket is preliminarily applied onto a portion, which touches the housing, of the metallic flange. Thereafter, the space between the housing and the flange is filled up by performing an insert-forming process on the housing. Consequently, the waterproofness of the connector is secured. However, this method has the redundant step of applying a hot melt adhesive thereon. Thus, the management of this method is complicated. Consequently, the manufacturing cost of such connectors is high.
SUMMARY OF THE INVENTION
The invention is accomplished in view of such circumstances. Accordingly, an object of the invention is to provide a low-cost highly-waterproof shield connector and to provide a manufacturing method therefor.
To achieve the foregoing object of the invention, according to an aspect of the invention, there is provided a shield connector (hereunder referred to a first shied connector), in which a housing covering an end portion of a shield wire is provided in a through hole formed in a mating shield wall and in which a shield layer of the shield wire is electrically conducted and connected to the mating shield wall, and in which a conductor of the shield wire is maintained in a condition where the conductor is plunged into the mating shield wall. In this shield connector, a metallic flange is provided so that the shield wire passes therethrough. The housing is formed by filling a synthetic resin, which contains low-melting-point metal to thereby have electric conductivity, into a mold for resin-molding, into which the shield wire and the metallic flange are inserted. The low-melting-point metal has a melting point at which the metal and the synthetic resin melt together, and is bonded to the metallic flange.
According to an embodiment (hereunder referred to as a second shield connector) of the first shield connector of the invention, the metallic flange is plated with low-melting-point metal adapted to melt together with the synthetic resin that is in a molten state.
According to an embodiment (hereunder referred to as a third shield connector) of the first or second shield connector of the invention, the low-melting-point is tin or solder.
According to an embodiment (hereunder referred to as a fourth shield connector) of one of the first to third shield connectors of the invention, a urethane waterproof tube is formed in such a way as to cover an external sheath provided outside the shield layer of the shield wire. Moreover, a rear end portion of the housing is formed in such a way as to cover the periphery of the waterproof tube.
According to another aspect of the invention, there is provided a method (hereunder referred to as a first manufacturing method) of manufacturing a shield connector, in which a housing covering an end portion of a shield wire is provided in a through hole formed in a mating shield wall and in which a shield layer of the shield wire is electrically conducted and connected to the mating shield wall, and in which a conductor of the shield wire is maintained in a condition where the conductor is plunged into the mating shield wall. This method comprises the steps of passing a metallic flange through the shield wire, inserting the shield wire, which passes through the metallic flange, into a mold for resin-molding, filling the mold with a synthetic resin that contains low-melting-point metal to thereby have electric conductivity. In the case of this method, the low-melting-point metal is brought into a molten state, together with the synthetic resin, and bonded to the metallic flange.
According to an embodiment (hereunder referred to as a second manufacturing method) of the first manufacturing method of the invention, the metallic flange is preliminarily plated with low-melting-point metal that melts together with the synthetic resin put into a molten state.
According to an embodiment (hereunder referred to as a third manufacturing method) of the first or second manufacturing method of the invention, the metallic flange is preliminarily heated and then inserted into the mold.
According to an embodiment (hereunder referred to as a fourth manufacturing method) of the second or third manufacturing method of the invention, both the low-melting-point metal, which is contained in the synthetic resin, and the low-melting-point metal, with which the metallic flange is plated, are tin or solder.
In the Case of First Shield Connector and First Manufacturing Method of the Invention
According to the first shield connector and the first manufacturing method of the invention, the low-melting-point metal contained in the synthetic resin of the housing is bonded to the metallic flange. Thus, the invention secures the waterproofness between the metallic flange and the housing. Moreover, the invention eliminates the necessity for the step of applying hot melt adhesive to the metallic flange, which is performed in the method of manufacturing the conventional shield connector. Thus, the invention can reduce the manufacturing cost of the shield connector. Moreover, the housing of the shield connector of the invention is constituted by the electrically conductive synthetic resin. Thus, the entire housing also serves as a shield member for covering an end portion of a shield wire. Consequently, the invention can reduce the number of components.
In the Case of Second Shield Connector and Second Manufacturing Method of the Invention
According to the second shield connector and the second manufacturing method of the invention, both the low-melting-point metal, which is contained in the synthetic resin, and the low-melting-point metal, with which the metallic flange is plated, are bonded to each other in a molten state. Thus, the invention secures the waterproof therebetween.
In the Case of Third Shield Connector of the Invention
Shield connectors of the invention may contain tin or solder in the synthetic resin as the low-melting-point metal, similarly as the third shield connector of the invention.
In the Case of Fourth Shield Connector of the Invention
According to the fourth shield connector of the Invention, the urethane waterproof tube closely adheres to both the rear end portion of the housing and the external sheath of the shield wire. Thus, the invention can make the rear end portion of the housing waterproof.
In the Case of Third Manufacturing Method of the Invention
According to the third manufacturing method of the invention, the metallic flange is preliminarily heated. This accelerates the joining between the low-melting-point metal, with which the metallic flange is plated, and the low-melting-point metal contained in the synthetic resin filled into the mold. Thus, the invention increases the adhesiveness of the metal.
In the Case of Fourth Manufacturing Method of the Invention
According to the fourth manufacturing method of the invention, both the low-melting-point metal, which is contained in the synthetic resin filled into the mold, and the low-melting-point metal, with which the metallic flange is plated, are tin or solder. Thus, both the low-melting-point metals easily join together. This enhances the waterproofness between the housing and the metallic flange.


REFERENCES:
patent: 4349241 (1982-09-01), Juris et al.
patent: 4490283 (1984-12-01), Kleiner
patent: 4678260 (1987-07-01), Gallusser et al.
patent: 4925404

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Shield connector and manufacturing method therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Shield connector and manufacturing method therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shield connector and manufacturing method therefor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3151758

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.