Electric lamp and discharge devices – With luminescent solid or liquid material – With gaseous discharge medium
Reexamination Certificate
2000-08-22
2002-09-17
Patel, Ashok (Department: 2879)
Electric lamp and discharge devices
With luminescent solid or liquid material
With gaseous discharge medium
C313S635000, C313S493000
Reexamination Certificate
active
06452325
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to fluorescent lamps and, more particularly, to the shatter-proofing of fluorescent lamps.
BACKGROUND Of THE INVENTION
In my previous U.S. Pat. No. 3,673,401 I disclosed an arrangement in which a fluorescent lamp could be rendered shatterproof by using a cylindrical transparent and non-frangible shield of polymeric material together with two rubber-like plastic end-caps. The cylindrical shield was made from a length of extruded plastic tubing having a diameter suitable for each size of fluorescent lamp and the end-caps were provided with a peripheral rib or flange to abut the end of the cylindrical tubing. The arrangement required hand assembly involving several steps. First, one of the end-caps was friction fitted onto the metallic ferrule at one end of the fluorescent lamp. Next, the cylindrical shield was said over the fluorescent lamp until its end abutted the peripheral rib. Finally, the second end cap was friction fitted over the opposite metallic ferrule and its position adjusted until its peripheral rib abutted the opposite end of the cylindrical shield. Reliability of the shatterproofing depended on how carefully the four elements were put together by the user. If the fluorescent lamp were dropped or fell from its fixture so that its glass envelope broke, the shards of glass as well as the phosphorescent powders and mercury used in the lamp could all be contained. This type of shatterproof fluorescent lamp assembly became very popular in industrial settings, especially those which had to be safeguarded against contamination by toxic particulates and materials.
More recently patents have been issued directed to making the assembly hold together more securely. Thus, U.S. Pat. Nos. 5,173,637 and 4,924,368 teach that an adhesive should be applied to the exterior of the metallic ferrule of the lamp so as to cause the end cap to better adhere to the lamp. While the use of adhesive allowed greater tolerances to be employed in the fabrication of the end-cap and thus facilitated assembly as compared to using an end-cap whose inner diameter was friction-fitted to tightly embrace the metallic ferrule, the assembly operation remained a somewhat tedious hand operation requiring the lighting maintenance personnel to manually put together the elements of the fluorescent lamp protection assembly in the field rather than merely replacing burned-out lamps. It would be advantageous to eliminate the need for field assembly as well as to provide a more reliable encapsulation method.
SUMMARY OF THE INVENTION
In accordance with the principles of the present invention, as exemplified by the illustrative embodiment, a shatterproof fluorescent lamp assembly is achieved capable of containing within a polymeric envelope all of the glass, powders and mercury used in the lamp without the need for separate, hand-assembled tubes and end-caps. Instead of manually fitting together end caps to a length of pre-cut, cylindrical tubing, a protective polymeric coating, advantageously a polycarbonate, is extruded directly on to the fluorescent lamp so as to be in intimately conforming contact with substantially all of the contours of the lamp's glass envelope and metallic ferrules. The lamp is passed through an air lock into the main lumen bore of an extruder crosshead which is connected to vacuum pump. A cylinder of hot, polymeric material is extruded and radially drawn inward toward the periphery of the lamp by the vacuum. The extruded cylinder should have a wall thickness, so that when cooled, it will exhibit sufficient beam strength to maintain the cylindrical shape even if the glass envelope of the fluorescent tube is shattered.
Prior to inserting the fluorescent lamp into the crosshead, a short length of easily removable silicone tubing is fitted over the electrical terminals at each end of the lamp to protect the terminals from being permanently coated with any plastic.so. According to one embodiment, the metallic ferrules of the lamp are pre-coated with an adhesive which, advantageously, may be a heat-activated adhesive. According to another embodiment, instead of using an adhesive, each end of the lamp is heated and then immersed in an air-fluidized bed of powdered ethylene vinyl acetate to pre-coat the metallic ferrules of the lamp. In either case, the lamp is then put through the extruder crosshead to receive the cylindrical sheath which adheres to the pre-coated portions of the lamp ends. Advantageously, as the trailing end of the first fluorescent lamp enters the crosshead, a second fluorescent lamp is inserted so as to make the process continuous for a number of successive lamps. At a convenient distance downstream from the crosshead, power driven rollers move the encapsulated lamp to a first cutting position where the extrudate between successive lamp ends is sheared, separating the encapsulated lamps from one another. A second cutting operation cuts the extrudate at the end of the lamp ferrule to facilitate removal of the silicone tubing covering the electrical terminals. The coated, shatterproofed lamps may then be packed for shipment. By immersing the lamp ends in the air-fluidized bed of powdered plastic to which the extrudate adheres, the ends as well as the glass envelope of the fluorescent lamp are substantially completely encapsulated.
REFERENCES:
patent: 3673401 (1972-06-01), Du Pont
patent: 4048537 (1977-09-01), Blaisdell et al.
patent: 4924368 (1990-05-01), Northrop et al.
patent: 5173637 (1992-12-01), Sica
patent: 5536998 (1996-07-01), Sica
Patel Ashok
Popper Howard R.
Thermoplastic Processes, Inc.
LandOfFree
Shatterproofing of fluorescent lamps does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Shatterproofing of fluorescent lamps, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shatterproofing of fluorescent lamps will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2887762