Shark cartilage extract: process of making, methods of...

Drug – bio-affecting and body treating compositions – Extract – body fluid – or cellular material of undetermined... – Derived from musculoskeletal system – other than cardiac muscle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S520000, C424S549000, C514S859000, C514S863000, C530S350000, C530S400000, C530S412000, C530S414000, C530S415000, C530S417000, C530S418000, C530S422000, C530S857000

Reexamination Certificate

active

06635285

ABSTRACT:

BACKGROUND OF THE INVENTION
Cartilage is a
avascularized tissue and has been studied as a potential candidate containing anti-angiogenic factors. It is also a tissue that is relatively resistant to tumor development. The tumor associated with cartilage, chondrosarcoma, is the least vascularized of solid tumors. Angiogenesis is one of the important factors in the development of a tumor. Discrete solid tumor masses appear if the tumor cells can provoke the adjacent vascular network to expand in order to supply their nutritional needs. The factors involved in the stimulation of angiogenesis have been studied for their role in the development of tumor and anti-angiogenic factors. Drugs having an angiogenic inhibitory activity have been also investigated as tools for controlling the growth or for effecting regression of tumors.
It has been discovered that scapular cartilage in calves contains a substance that inhibits the vascularization of solid tumors (Langer et al. (1976)
Science.
193: 70-72). Because of its encouraging potential as anti-tumor agent, sources of greater supplier of cartilage have been looked for.
Sharks are a potential source of this kind of angiogenesis inhibitor because their endoskeleton is composed entirely of cartilage (6% of their body weight versus 0.6% in calves). Sharks have a low propensity for tumor development. Many hypotheses have been elaborated to explain this low probability of developing tumors in sharks. It has been shown inter alia that IgM antibodies able to readily attack any aggressing agent, or that macrophages capable of differentiating normal cells from neoplastic cells and of destroying the latter. Rosen and Woodhead (1980) in
Medical Hypotheses.
6:441-446 have postulated that the rarity of tumors in elasmobranchs (a subclass to which sharks and rays belong) might be due to the high ionic strength of their tissues, which is equivalent to a high body temperature. In these conditions, these authors believe that the immune system exerts a close to 100% immunological surveillance. It has also been discovered that sharks produce an aminosterol having antibacterial and antiprotozoal properties.
Finally, Lee and Langer (1983) in
Science
221: 1185-1187 and Folkman and Klagsbrun (1987) in
Science.
235: 442-447 have shown that sharks produce a substance that inhibits neovascularization. Lee and Langer (op. cit.) have isolated this substance by extracting it from shark cartilage in denaturing conditions (guanidine extraction). This process of extraction is however very long (41 days), and the yield of active components is far from excellent. While the active substance isolated from calves has a molecular weight of about 16 kilodaltons (kDa), the same group of researchers has not given a precise molecular weight to the one isolated from sharks. This substance is only defined has having a molecular weight higher than 3500 Daltons.
Oikawa et al. (1990) in A Novel Angiogenic Inhibitor Derived from Japanese Shark Cartilage (I). Extraction and Estimation of Inhibitory Activities Toward Tumor and Embryonic Angiogenesis (
Cancer Letters
51: 181-186) have applied the same method of extraction as the one described by Lee and Langer, but of a much shorter duration (2 days instead of 41 days). The anti-angiogenic substance isolated from shark cartilage by Oikawa et al. is restricted to a molecule having a molecular weight ranging from 1000 to 10,000 Daltons. Schinitsky (U.S. Pat. No. 4,473,551) has described a water extract of crude powdered shark cartilage which fraction of more than 100,000 Daltons has an anti-inflammatory activity, especially in combination with glucosamine. No suggestion of a component of this extract having an anti-angiogenic or anti-tumor activity is made in this patent.
Kuetner et al. (U.S. Pat. No. 4,746,729) have isolated a olymorphonuclear neutrophil (PMN) elastase inhibitor from bovine cartilage. This inhibitor has been obtained from an aqueous extract of cartilage from which molecules of a molecular weight of less than 50,000 Daltons have been retained. Fractionation on Sephacryl S-200 has given numerous fractions from which those of 10-40 kDa have been pooled after they have demonstrated an anti-elastase activity. The active component has an isoelectric point of 9.5 and might have a molecular weight of about 15,000 Daltons. Kuetner et al. (U.S. Pat. No. 4,042,457) have also shown that bovine cartilage has a component of a molecular weight of less than 50,000 Daltons which has a cell proliferation inhibitory activity without any activity on endothelial cell growth. Balassa et al. (U.S. Pat. No. 4,822,607) have obtained a cartilage extract in an aqueous solution, which extract has an anti-tumor activity. However, we have observed no anti-angiogenic activity in an extract obtained by reproducing Balassa's method. Spilburg et al. (U.S. Pat. No. 4,243,582) have isolated two glycoproteins of molecular weight of 65 kDa and of isoelectric point of 3.8 from bovine cartilage (guanidine-extraction) which show anti-trypsin activity and an endothelial cell growth inhibitory activity.
Calf and shark cartilage contain many biological activities such as pro-inflammatory activity, anti-inflammatory activity, anti-angiogenic activity, lysozyme activity, cell growth-promoting activity, inhibitory activity against types I and IV collagenase, elastase, and other proteases like trypsin, chymotrypsin and plasmin. However, nobody has yet obtained a cartilage extract that comprises a pool of clinically valuable activities, and particularly with new activities.
Shark cartilage anti-angiogenic component(s) have been generally tested in rabbit corneal pocket assay or in chick chorioallantoic membrane (CAM) assay. Up to date, whole powdered cartilage has been tested directly on tumors in vivo, on human melanoma xenograft implanted in nude mice (U.S. Pat. No. 5,075,112), as well as tested in CAM tests for its anti-angiogenic effect. Even though an anti-tumor effect has been assigned to cartilage extracts, this effect has most often been attributed to the anti-angiogenic component that deprives the tumor of blood supply. Up to now, there is no evidence in the art that a shark cartilage has a direct effect on tumor cell proliferation.
A few methods of obtaining shark cartilage extracts and fractions are already known. Some of them produce a powdered crude cartilage without any extraction (U.S. Pat. No. 5,075,112). Others use denaturing or chaotropic agents like guanidine (U.S. Pat. No. 4,243,582). Others perform a pre-treatment of cartilage by way of an enzymatic digestion to get rid of any muscular, nervous or vascular structures surrounding the cartilage, which pre-treatment step is followed by the elimination of fats in organic solvents, and then the active components are extracted in an aqueous phase. (Balassa et al., U.S. Pat. Nos. 3,478,146; 4,350,682; 4,656,137; and 4,822,607). The effect of such pre-treatment on the preservation of the integrity of the biologically active cartilage components is not known. If too extensive, an enzyme digestion may hydrolyze active protein components. For example, Balassa's method (U.S. Pat. No. 4,822,607) produces a liquid extract without anti-angiogenic activity; this loss may be the result of such enzymatic degradation, or else, the anti-angiogenic is masked or antagonized by other molecules. Balassa's method does not include a fractionation step which would further enrich an extract in active components, and which may remove undesirable molecules. Others simply produce aqueous extracts (in water (U.S. Pat. No. 4,473,551) or salt solutions (U.S. Pat. No. 4,746,729) of cartilage by eliminating the unsolubilized material. Among the latter, specific fractions of specific molecular weights have been particularly retained for further study and purification (see discussion above). There is no process in the art that leads to the preparation of a cartilage extract having substantially all the hydrosoluble active components of cartilage.
Moreover, the methods of the prior art are too lengthy to be of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Shark cartilage extract: process of making, methods of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Shark cartilage extract: process of making, methods of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shark cartilage extract: process of making, methods of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3157779

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.