Shaped woven tubular soft-tissue prostheses and method of...

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Having variable diameter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001510

Reexamination Certificate

active

06821294

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to shaped seamless woven tubular prostheses and methods of manufacture. In particular, the present invention relates to implantable endoluminal prostheses used in the vascular system.
BACKGROUND OF THE INVENTION
Tubular woven fabrics have been used for soft-tissue implantable prostheses to replace or repair damaged or diseased lumens in the body. In particular, endoprostheses are used in the vascular system to prevent the blood from rupturing a weakened section of the vessel. Such endoluminal conduits are generally affixed in a specified location in the vessel by means of stents, hooks or other mechanisms which serve to secure the device in place. Endoluminal tubular devices or conduits can also be used in other lumens in the body, such as in the esophagus and colon areas.
Vascular grafts have been used successfully for many years to replace segments of the diseased vessel by open surgical methods. These techniques, however, required long and expensive procedures which have a high degree of risk associated with them due to the complexity of the surgical procedures. Presently, non-invasive techniques for treating body lumens, such as vessels in the vascular system, have become more prominent because they present less risk to the patient and are less complex than open surgery. Generally, a doctor will make an incision in the femoral artery and introduce an endoluminal device by means of a catheter delivery system to the precise location of the damaged or diseased vessel. The device will generally include a stent and graft combination which is deployed from the delivery system and affixed in place usually by use of a balloon catheter. The balloon catheter is used to expand the stents which are attached to and most often contained within the graft portion. Expansion of the stent serves to both anchor the graft and to maintain the graft and the body lumen in the open state. In some cases, self-expanding stents or the like are used. Stents made from shaped-memory materials, such as nitinol, are also employed whereby radial expansion or contraction of the stent is designed to occur at specified temperatures.
The use of tubular endoluminal prostheses, however, requires a high degree of precision in the diameter of the tube, such that its external diameter matches the internal diameter of the body lumen very closely, thereby conforming to the internal surface of the body lumen. The vessels or lumens in the body, however, often vary in diameter and shape from one length to another, in addition to sometimes defining a tortuous path therebetween. This is particularly true with the vessels in the vascular system. Thus, tubular endoprostheses which are generally straight in configuration cannot accurately conform to all portions of the lumen which have these variations present. Oftentimes, the prosthesis wall will require a bunching or gathering within the lumen of the vessel which presents a long-term potential for thrombosis and generally creates a more turbulent environment for blood flow.
More recently, in recognition of certain problems in implanting and delivering endoluminal prostheses, a thinly woven graft has been made which is designed to closely fit the inner lumen of vessels. Such a graft is described in co-assigned and co-pending U.S. Ser. No. 08/285,334 filed on Aug. 2, 1994, herein incorporated by reference. The thinness of this graft allows for it to be easily packed into a catheter delivery system and occupy less space within the lumen when deployed. However, these grafts have been made in straight lengths or bifurcated structures using traditional weaving techniques which have specific limitations as to the final shape of the product and, in the case of bifurcated or multi-diameter grafts, the transition from one diameter to another occurs at a single point in the weave, creating a sudden change in the weaving pattern of the fabric. Such sudden changes, as further discussed herein, are considered undesirable.
Weaving is commonly employed to fabricate various tubular shaped products. For example, implantable tubular prostheses which serve as conduits, such as vascular grafts, esophageal grafts and the like, are commonly manufactured using tubular weaving techniques, wherein the tubular product is woven as a flat tube. In such weaving processes, a variety of yarns are interwoven to create the tubular fabric. For example, a set of warp yarns is used which represents the width of the product being woven, and a fill yarn is woven between the warp yarns. The fill yarn is woven along the length of the warp yarns, with each successive pass of the fill yarn across the warp yarns for each side of the tube representing one machine pick. Thus, two machine picks represent one filling pick in a tubular woven structure, since weaving one fill yarn along the entire circumference of the tube, i.e., one filling pick, requires two picks of the weaving machine. As such, in a conventional woven product, the fill yarn is woven along the length of the warp yarns for a multiple number of machine picks, with the woven product produced defined in length by the number of filling picks of the fill yarn and defined in width by the number of warp yarns in which the fill yarn is woven therebetween. Such terminology and processes are common in the art of textile weaving.
Woven tubular prostheses such as vascular grafts, having tapered diameter sections or tailored shapes such as those shown in the inventive figures discussed herein, have heretofore not been made without requiring manual customization in the form of cutting, splicing and/or tailoring with sutures. Continuous flat-weaving techniques have not been able to make diameter changes in a gradual manner, having a tapered tubular section transitioning from one diameter to another diameter. Instead, diameter changes in the woven product occur instantaneously, creating a sudden split in the warp yarns. Such a sudden split, such as at the crotch section of a bifurcated endoluminal graft, leaves gaps or voids in the weave at the splitting point. Thus, conventional bifurcated woven grafts have required sewing of the crotch section in order to insure a fluid-tight character. Such sewing is labor intensive and is generally done manually, thereby introducing the potential for human error and reliance on the technique of the technician.
Furthermore, the prior art techniques of forming tubular shapes have required manual cutting and suturing of standard woven tubes to the desired size and shape. Continuous weaving of tubular grafts to produce seamless gradual diameter transitions in devices has not been previously known. For example, the change from a first diameter to a second diameter in a single lumen, straight graft, in a continuous weaving process was not attempted due to the aforementioned limitations. Instead, individual grafts of different diameters would be individually woven and sutured together to make a continuous tube. The diameter change required customized cutting to gradually transition from one diameter to another. For example, in the case where a bifurcated graft having a 24 mm aortic section and leg sections with different diameters, e.g. 12 mm and 10 mm, the surgeon would manually cut and tailor one of the legs of a bifurcated graft which was formed having two equal leg sections with the same diameters, and suture a seam along that leg to form a leg of the desired different diameter. This customization required cutting and suturing. Such customization relied heavily on the skill of the physician and resulted in little quality control in the final product. Additionally, such grafts could not always be made in advance for a particular patient, since the requirements for such customization may not be known until the doctor begins the surgery or procedure of introducing the device into the body. Additionally, as previously mentioned, the suture seams take up considerable amounts of space when packed into the delivery capsule or other catheter-like device designed to deploy the endoluminal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Shaped woven tubular soft-tissue prostheses and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Shaped woven tubular soft-tissue prostheses and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shaped woven tubular soft-tissue prostheses and method of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3324685

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.