Shaped three-dimensional engineered fiber preforms with...

Textiles: weaving – Fabrics – Special shape

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C139SDIG001, C139S363000, C442S206000

Reexamination Certificate

active

06283168

ABSTRACT:

BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates generally to the composite structures and applications thereof, more particularly, to shaped three-dimensional fabrics and rigid composite structures made therewith and methods for making same.
(2) Description of the Prior Art
In general, it is known in the art to employ multi-layer fabrics combined with a resinous treatment for forming rigid composite structures for various applications, including but not limited to infrastructure and connectors. Additionally, it is known in the art to use high performance fibers to improve the characteristics of the composite structure, including impact resistance, strength, and shear resistance. However, overall, these prior art and related structures still fail, particularly where non-uniformities exist either due to multiple shaped fabrics being spliced, joined, or otherwise combined to form the final structure; failure often occurring at the points, areas, and/or regions of non-uniformity. Therefore, no prior art has been capable of providing a singular, non-laminated fabric having varying cross-sectional area including insertion hole(s). Thus, there remains a need for a singular piece, non-laminated three-dimensional fabric having varying cross-sectional area including insertion hole(s), particularly one that may be formed into a composite structure via the introduction of resin thereinto and curing thereof.
Furthermore, no prior art provides a three-dimensional fabric having varying cross-sectional shapes and other contoured shapes, or shaped three-dimensional fabric in a range of dimensions. Thus, there remains a need for shaped three-dimensional fabric in a range of dimensions to provide components and connectors in a range of sizes for different applications and uses.
Unlike prior art multidimensional, multi-component laminated fabric composites for use as structural components, couplers, and/or connectors, the three-dimensional fabric having varying cross-sectional shapes including insertion holes of the present invention provides increased impact resistance, resistance to delamination, shear resistance, tensile strength, overall resistance to deformation and breakage, strength, and overall performance due to the uninterrupted dissipation of energy spread throughout the entire surface area, cross-sectional area, and internal structure of the fabric and the substantially uniform structural characteristics presented in the finished product. The transfer of energy is uninterrupted and the other performance characteristics of the three-dimensional fabric having varying cross-sectional shapes and structure of the present invention are improved over the prior art because no seams, splices, joints, creases, wrinkles, or non-uniformities, including discontinuity in fiber reinforcement, are present in the fabric performs before, during, or after lamination, treatment, and molding to form the finished product. Moreover, the absence of seams provides increased resistance to delamination and component or structural failure.
Additionally, prior art teaches the use of resinous treatment or coating in combination with multi-layer laminated structures to create a rigid composite structure and to improved resistance to delamination, impact resistance, strength, compression, and other characteristics. However, any and all resinous treatments, even after setting and curing, merely provide amorphous bonding between laminated layers, multiple components, and at any join, splice, or other point of connection between components, continue to be subject to delamination, reduction of strength and impact resistance in those amorphous regions.
SUMMARY OF THE INVENTION
The present invention is directed to a shaped three-dimensional fabrics having a variety of cross-sectional shapes and dimensions, including insertion holes therein and rigid composite structures formed thereof, wherein the fabric has an increased impact resistance, strength, shear strength, compression characteristics, resistance to delamination, and overall uniformity and structural integrity. Additionally, the invention is directed to a method for making the same. The invention is applicable to structural components, including but not limited to couplers and connectors. Also, the invention is applicable to other structural components where integrated insertion hole(s) are desired.
Advantageously, the invention includes lightweight, multi-layer performs having a single, integral composition, i.e., formed of a single, continuous, and integrated fabric structure that does not require splicing, joining, or otherwise connecting multiple pieces to provide a variety of cross-sectional shapes and dimensions, including insertion holes therein. As such, the present invention provides superior structural uniformity and/or continuity and performance characteristics than any prior art structure or substitute. Also, the method of manufacturing shaped three-dimensional fabrics in a variety of cross-sectional shapes and dimensions requires a single fabric-forming machine with no additional equipment or separate processes required to form insertion holes therein. Also, rigid composite structures according to the present invention do not require joining, splicing, or otherwise connecting, patterning, creating cut-out regions or overlapping material to form the final structure, shape or dimensions in order to conform to a predetermined shaped structure or component. Furthermore, the shaped three-dimensional fabric structure according to the present invention may be molded, compression molded, pressed, or otherwise manipulated into a contoured shape without delamination, creasing, folding, or making non-uniformities within layers forming the laminated structure. Also, the shaped three-dimensional fabric structure may be formed into a rigid composite structure via the addition of a resin or similar hardening material.
Accordingly, one aspect of the present invention is to provide a shaped three-dimensional fabric structure for applications requiring substantially uniform characteristics across all parts and regions of the structure. Another aspect of the present invention is to provide a shaped three-dimensional fabric structure having insertion hole(s) for use as a coupler, attach point, connector, and/or other structural components where integrated insertion hole(s) are desired. Additionally, it is an aspect of the present invention to provide a shaped three-dimensional fabric structure and rigid composite structure formed therewith for use in structural applications, including but not limited to structural components, connectors, joints, and couplers.
Also, it is an aspect of the present invention to provide a method for forming a shaped three-dimensional fabric structure, wherein the structure includes a singular component, molded preform.
Finally, it is an aspect of the present invention to provide a method for forming a shaped three-dimensional fabric structure having insertion holes and made into a rigid composite structure including the steps of weaving a 3-D engineered fiber preform, including top and bottom surface floats for forming insertion holes, separating the edges of the preform after weaving and translating the edges such that a 90 degree shift in edge plane orientation results, opening the insertion hole area, inserting the preform into a mold, preferably a shaped and closed molding, introducing a resin into the preform in the mold, and curing the resin. Additional finishing steps may be advantageously used to assure that the finished surfaces, edges, and dimensions are consistent with those desired of the end product.
Other objects and advantages of the present invention will become apparent to those skilled in the art after a reading of the following description of the preferred embodiment and the accompanying drawings, which are merely illustrative of such invention.


REFERENCES:
patent: 4622254 (1986-11-01), Nishimura et al.
patent: 5021283 (1991-06-01), Takenaka et al.
patent: 5091246 (1992-02-01), Yasui

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Shaped three-dimensional engineered fiber preforms with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Shaped three-dimensional engineered fiber preforms with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shaped three-dimensional engineered fiber preforms with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2465100

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.