Shaped charge for large diameter perforations

Ammunition and explosives – Blasting – Detonation wave modifying

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C175S004600

Reexamination Certificate

active

06305289

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to the field of lined explosive charges for perforating targets. More particularly, the present invention relates to a disk shaped component in a shaped charge liner for producing a material penetrating jet to produce a large target perforation downhole in a wellbore.
The invention is particularly useful in the field of downhole well casing perforations. Well casing is typically installed in boreholes drilled into subsurface geologic formations. The well casing prevents uncontrolled migration of subsurface fluids between different well zones and provides a conduit for production tubing in the wellbore. The well casing also facilitates the running and installation of production tools in the wellbore. Well tubing can be installed within well casing to convey fluids to the well surface.
To produce reservoir fluids such as hydrocarbons from a subsurface geologic formation, the well casing is perforated by multiple high velocity jets from perforating gun shaped charges. A firing head in the perforating gun detonates a primary explosive and ignites a booster charge connected to a primer or detonator cord. The detonator cord transmits a detonation wave to each shaped charge.
In a conventional shaped charge, booster charges within each shaped charge activate explosive material which collapse a shaped liner toward the center of a cavity formed by the shaped charge liner. The collapsing liner generates a centered high velocity jet for penetrating the well casing and the surrounding geologic formations. The jet properties depend on the charge case and liner shape, released energy, and the liner mass and composition. Shaped charge jets perforate the well casing and establish a flow path for the reservoir fluids from the subsurface geologic formation to the interior of the well casing. This flow path can also permit solid particles and chemicals to be pumped from the casing interior into the geologic formation during ravel packing operations.
Various efforts have been made to modify the performance of shaped charges. Barriers and voids have been placed within the explosive material to modify the detonation wave shape collapsing the liner. Examples of detonation wave shaping techniques are described in U.S. Pat. No. 4,594,947 to Aubry et al. (1986), U.S. Pat. No. 4,729,318 to Marsh (1988), and U.S. Pat. No. 5,322,020 to Bernard et al. (1984). In each of these patents, detonation wave shapers are positioned in the explosive material between the detonator cord and the liner. In U.S. Pat. No. 5,753,850 to Chawla et al. (1998), a spoiler was positioned within the liner cavity to modify the perforating jet shape.
Other efforts have been made to modify perforating jet performance by changing the liner shape. In U.S. Pat. No. 3,268,016 to Bell (1964), a disk-like appendage in a liner was provided to peen the rough perforation burr after the leading perforating jet portion penetrated through the target. The disk-like appendage was configured to form a slug portion with a diameter larger than the perforating jet entry hole diameter. In U.S. Pat. No. 5,559,304 to Schweiger et al. (1996), a liner having a flattened outer surface for the purpose of stretching and flattening the perforating jet shape. The flattened central region of the liner apex reduced the thickness of the liner between 10-15 percent. The velocity of the perforating jet was reduced to enhance stable flight and end-ballistic performance. In U.S. Pat. No. 4,702,171 to Tal et al. (1987), the liner apex was hollowed, and in U.S. Pat. No. 3,137,233 to Lipinski (1962), a conical liner represented a squared liner apex in one view for the purpose of facilitating the liner manufacture.
One technique for generating a large diameter perforation uses a mandrel to shape the perforating jet shape. In U.S. Pat. No. 4,841,864 to Grace (1989), a mandrel was placed along the liner longitudinal axis to control the perforating jet shape. In U.S. Pat. No. 5,155,297 to Lindstadt et al. (1992), a solid weight member was centrally positioned in the liner to stabilize the deformation of the perforating jet. The weight member extended into the explosive charge and through the liner material.
Another technique for generating a larger perforating hole incorporates a liner having a hemispherical portion attached to a conical skirt. Because the hemispherical portion has a discontinuity in the liner slope, a negative velocity gradient creates a bulge in the material perforating jet which leads to a larger hole in the target material. Although a larger hole is created, the size of the hole is limited by the configuration of the composite liner surfaces.
In certain well completion activities such as gravel packing operations, large diameter well perforations are desirable to facilitate the rapid placement of solid particles into the well. To accomplish this objective, a perforating gun should remove a large target surface area from the casing before the energy of the perforating jet is expended. Conventional shaped charge techniques are limited in their ability to generate large casing holes without significantly increasing the shaped charge size. Accordingly, a need exists for an apparatus that can efficiently create large diameter perforations or minimum penetration in well casing and other selected targets.
SUMMARY OF THE INVENTION
The present invention provides an apparatus actuatable by a detonator to perforate a material. The apparatus comprises an explosive material which can be initiated by the detonator to create a detonation wave, a shaped liner proximate to said explosive material and having a first end facing the detonator and having a second end formed about a longitudinal axis through a hollow space, wherein said shaped liner is collapsible about said hollow space when impacted by said detonation wave to form a material penetrating jet, and a disk proximate to said liner first end and deformable by said detonation wave to modify the material penetrating jet by resisting radial movement of said collapsing liner toward said liner longitudinal axis.
In other embodiments of the invention, the explosive material can be positioned within a housing recess, the disk can be attached to the liner, and the disk can be formed with different materials in different configurations. The disk surfaces can be flat, concave, convex, or other shapes, and the disk can be integrated into the liner.


REFERENCES:
patent: 3613582 (1971-10-01), Levamaki
patent: 3658006 (1972-04-01), Nistler et al.
patent: 3789760 (1974-02-01), Griffith
patent: 3948181 (1976-04-01), Bergstrom
patent: 4499830 (1985-02-01), Majerus et al.
patent: 4776272 (1988-10-01), Lindstadt et al.
patent: 4776278 (1988-10-01), Scholles et al.
patent: 4841864 (1989-06-01), Grace
patent: 4905601 (1990-03-01), Gabriel et al.
patent: 4942819 (1990-07-01), Thoma et al.
patent: 4979443 (1990-12-01), Rittel et al.
patent: 5033387 (1991-07-01), Lips
patent: 5155297 (1992-10-01), Lundstadt et al.
patent: 5175391 (1992-12-01), Walters et al.
patent: 5251561 (1993-10-01), Murphy
patent: 5753850 (1998-05-01), Chawla et al.
patent: 5797464 (1998-08-01), Pratt et al.
patent: 3111921 (1985-05-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Shaped charge for large diameter perforations does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Shaped charge for large diameter perforations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shaped charge for large diameter perforations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2576758

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.