Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – Solid – shaped macroscopic article or structure
Reexamination Certificate
2000-10-10
2004-02-03
Douyon, Lorna M. (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
Solid, shaped macroscopic article or structure
C510S224000, C510S298000, C510S400000, C510S466000
Reexamination Certificate
active
06686327
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
This invention relates generally to solid laundry detergent, dish-washing detergent and cleaning compositions and, more particularly, to new shaped bodies with improved solubility in water which are distinguished by a content of surfactants, disintegrators and special defoamer granules. The invention also relates to a process for producing the shaped bodies which is particularly suitable for the production of tablets.
A typical feature of anionic surfactants is that they generate foam. In many applications, for example in manual dishwashing detergents and hair shampoos, this effect is expressly desired by the consumer because it is equated with performance even though—scientifically—this is not exactly the case. However, in the field of domestic and industrial detergents, especially those in tablet form, foaming is largely undesirable because it can quickly lead to overfoaming of the machine. Since anionic surfactants generally cannot be dispensed with as a constituent of the formulations by virtue of their special performance profile, detergent formulations have to be provided with a sufficient quantity of defoamers which, on the one hand, limit the foam volume to an acceptable level without, on the other hand, reducing the performance of the composition or making it too expensive. Various compounds are known from the prior art for this purpose, including soaps, paraffins and silicones to mention but a few.
Hitherto, such defoamers have been produced either by drying the corresponding aqueous emulsions or dispersions or by directly spraying the defoamer component onto a support. Known processes such as, for example, fluidized-bed drying or fluidized-bed granulation, spray mixing and conventional countercurrent drying in a spray drying tower are used for this purpose. Generally, additives such as, for example, sodium sulfate or zeolite are also incorporated as carriers. Viewed macroscopically, auxiliaries and defoamer are homogeneously distributed in the granules although under a microscope it can be seen that the product also has heterogeneous zones, for example zones in which the defoamer is present in concentrated form. The effect of conventional defoamers of this type is in need of improvement, particularly if detergents—preferably those in tablet form—are to be effectively defoamed even when they contain a high percentage of particularly high-foaming anionic surfactants or nonionic surfactants that are extremely difficult to defoam. Accordingly, a first problem addressed by the invention was to remedy this situation.
In connection with shaped laundry detergent, dishwashing detergent and cleaning compositions, i.e. in particular tablets, there is still the problem that these shaped bodies are not always satisfactory in their solubility. This applies in particular to their solubility in cold water and to dispensing from the dispensing compartment of washing machines. Accordingly, another problem addressed by the present invention was to improve the dissolving rate of these shaped bodies.
BRIEF SUMMARY OF THE INVENTION
The present invention relates to a solid-form detergent composition having improved solubility in water containing
(a) a surfactant selected from the group consisting of an anionic surfactant, a nonionic surfactant, a cationic surfactant, an amphoteric surfactant, and mixtures thereof;
(b) a disintegrator; and
(c) defoamer granules containing silicones and support materials.
It has surprisingly been found that, by using the new defoamer granules, not only is the foam control of high-foaming compositions and compositions difficult to defoam improved, their dissolving rate can also be significantly increased. In this way, it is now even possible, for example, to produce tablets which generate little foam in use and which, compared with commercially available detergent tablets, dissolve so quickly that they can be directly introduced into the wash liquor from the dispensing compartment of washing machines, i.e. need no longer be introduced into the drum.
DETAILED DESCRIPTION OF THE INVENTION
Anionic surfactants
Typical examples of anionic surfactants are soaps, alkyl benzenesulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, &agr;-methyl ester sulfonates, sulfofatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, hydroxy mixed ether sulfates, monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and salts thereof, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, N-acyl amino acids such as, for example, acyl lactylates, acyl tartrates, acyl glutamates and acyl aspartates, alkyl oligoglucoside sulfates, protein fatty acid condensates (especially wheat-based vegetable products) and alkyl (ether)phosphates. If the anionic surfactants contain polyglycol ether chains, the polyglycol ether chains may have a conventional homolog distribution, although they preferably have a narrow homolog distribution. Alkyl benzenesulfonates, alkyl sulfates, soaps, alkanesulfonates, olefin sulfonates, methyl ester sulfonates and mixtures thereof are preferably used. Preferred alkyl benzenesulfonates preferably correspond to formula (I):
R—Ph—SO
3
X (I)
in which R is a branched, but preferably linear alkyl group containing 10 to 18 carbon atoms, Ph is a phenyl group and X is an alkali metal and/or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium. Of these alkyl benzenesulfonates, dodecyl benzenesulfonates, tetradecyl benzenesulfonates, hexadecyl benzenesulfonates and technical mixtures thereof in the form of the sodium salts are particularly suitable. Alkyl and/or alkenyl sulfates, which are also often referred to as fatty alcohol sulfates, are understood to be the sulfation products of primary and/or secondary alcohols which preferably correspond to formula (II):
R
2
O—SO
3
Y (II)
in which R
2
is a linear or branched, aliphatic alkyl and/or alkenyl group containing 6 to 22 and preferably 12 to 18 carbon atoms and Y is an alkali metal and/or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium. Typical examples of alkyl sulfates which may be used in accordance with the invention are the sulfation products of caproic alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmitoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol and erucyl alcohol and the technical mixtures thereof obtained by high-pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen's oxosynthesis. The sulfation products may advantageously be used in the form of their alkali metal salts, more especially their sodium salts. Alkyl sulfates based on C
16/18
tallow fatty alcohols or vegetable fatty alcohols with a comparable C-chain distribution in the form of their sodium salts are particularly preferred. In the case of branched primary types, the alcohols are oxoalcohols which are obtainable, for example, by reacting carbon monoxide and hydrogen on &agr;-olefins by the Shop process. Corresponding alcohol mixtures are commercially available under the trade names of DOBANOL® or NEODOL®. Suitable alcohol mixtures are DOBANOL 91®, 23®, 25® and 45®. Another possibility are the oxoalcohols obtained by the standard oxo process of Unichema or Condea in which carbon monoxide and hydrogen are added onto olefins. These alcohol mixtures are a mixture of highly branched alcohols and are commercially available under the name of LIAL®. Suitable alcohol mixtures are LIAL 91®, 111®, 123®, 125®, 145®. Finally, soaps are understood to be fatty acid salts corresponding to formula (III):
R
3
CO—OX (III)
in which R
Borntraeger Andrea
Koren Karin
Neuss Michael
Schmid Karl-Heinz
Stanislowski Detlef
Cognis Deutschland GmbH & Co. KG
Douyon Lorna M.
Drach John E.
Trzaska Steven J.
LandOfFree
Shaped bodies with improved solubility in water does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Shaped bodies with improved solubility in water, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shaped bodies with improved solubility in water will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3355036