Service interaction in an intelligent network

Telephonic communications – Plural exchange network or interconnection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S201010, C379S207020, C379S221080, C379S227000

Reexamination Certificate

active

06661887

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a mechanism for setting up calls and providing subscribers with services, which mechanism improves the operation of an intelligent network.
A subscriber in a telecommunications network, for example in a wired network or a mobile telephone network, can be provided with a great number of different services by an intelligent network (IN). Such services include a virtual private network (VPN) which enables short numbers to be used between the subscribers belonging to a local network, and a personal number in which the intelligent network reroutes the calls made to the personal number in a manner controlled by the subscriber. An example of this kind of intelligent network is described in the recommendations of the Q-1200 series of ITU-T, of which the recommendations Q-1210 to Q-1219 define a group of features called CS-1 (Capability Set 1), and Q-1220 to Q-1229 define a group of features called CS-2, correspondingly. The invention and its background are described using the CoreINAP terminology of the ETS 300 374-1 recommendation, but the invention can also be used in intelligent networks implemented by other intelligent network standards.
A basic call state model (BCSM) defined in connection with an intelligent network describes the different phases of call control and comprises the points in which the call control can be interrupted in order to activate a service of the intelligent network. It identifies the detection points in the call and connection process in which the service logic objects of the intelligent network can interact with basic, call and connection management features.
In the conventional call setup which takes place without the assistance of an intelligent network, telephone exchanges independently make all inferences related to call routing. Intelligent network architecture involves one or more service control functions (SCF). An apparatus or a network element which performs the tasks assigned to the SCF is called a service control point (SCP). Within the scope of the present application the SCF and the SCP are equal and referred to as the SCP below. The SCP gives the exchange call setup instructions or the exchange can query the SCP for call setup instructions. If, for example, a B-subscriber connection is deemed busy at some phase of the call setup, the call can be directed to an alternative number.
FIG. 1
shows also other intelligent network elements significant for understanding the invention, such as a call control function (CCF) which comprises the high level call processing functions of the exchange, such as setting up and releasing transmission connections. A service data function (SDF) and service data point (SDP) form a database comprising subscriber- and/or service-specific data. A specialized resource function (SRF) is an interface for network mechanisms related to interaction with a subscriber. It can be associated with so-called intelligent peripherals (IP) which comprise more sophisticated call processing functions than do the exchanges in general.
A service switching function (SSF) is an interface between the call control function CCF and the service control function SCF. A network element performing the SSF function is called a service switching point SSP. An intelligent network service is provided in such a manner that in connection with an encounter of the detection points related to the services, the service switching point SSP queries the service control point SCP for instructions by means of messages transmitted over an SSP/SCP interface. In intelligent network terminology these messages are called operations. In connection with the intelligent network service, a service program whose activity determines the operations that the SCP transmits to the SSP at a particular call phase is activated in the service control point (SCP).
FIG. 2
shows the operation of a prior art intelligent network in detection points. In step
2
-
1
, an SSP sends an SCP an InitialDP operation which comprises the necessary data for setting up a call. Next, the detection points are armed in the SSP. In step
2
-
2
, the SCP sends the SSP a Request Report BCSM Event message which informs the SSP which detection point encounters it must report to the SCP. Next, in step
2
-
3
, the SCP typically transmits charging and/or interaction operations, such as Furnish Charging information (store computational information related to the intelligent network service) or Play Announcement (give the subscriber an announcement related to the intelligent network). In step
24
, the SCP sends the SSP a routing instruction, such as Collectinformation (collecting selection information from the subscriber), Connect (route the call to a new number), Continue (continue the call setup by the same information) or ReleaseCall (disconnect). In the intelligent network recommendations, call setup is divided into certain coarse phases called points-in-call (PIC). The SSP may have been defined to continue the call setup in response to the Collectinformation operation from phase PIC
2
, and to continue the call setup in response to the Connect operation from phase PIC
3
, etc.
There are two kinds of detection points. The above events of
FIG. 2
relate to a detection point which is called a trigger detection point (TDP). The SSP can make an initial enquiry to the SCP in connection with such a TDP detection point and the SSP receives in it instructions for setting up a call. The other type of detection points is a so-called event detection point (EDP). In
FIG. 2
, step
2
-
5
shows an occasion when such an EDP detection point is encountered during call setup. The SSP reports the encounter of the detection point to the SCP which sends it more-call setup instructions in step
2
-
7
. The intelligent network architecture described above can also be applied to a mobile communications system, when the exchanges (EXC) would be replaced by a mobile switching centre (MSC).
A problem in the known intelligent network architectures is that services that are formed at an early stage of a call which demand a control relationship for longer than the duration of one detection point prevent the services from becoming activated. A practical such a service could be a private numbering plan or a personal number providing a rerouting to an alternative number. Two or more such services cannot thus be activated simultaneously to one half of a call in the same exchange. For a service provider and user, this results in the problem that services of a particular type cannot be implemented simultaneously in the same exchange to the same subscriber.
BRIEF DESCRIPTION OF THE INVENTION
An object of the invention is thus to provide a method for providing services so as to solve the above problems related to producing several simultaneous services. The objects of the invention can be achieved by methods and equipment characterized by what is said in the characterizing parts of the independent claims. The preferred embodiments and applications of the invention are disclosed in the dependent claims.
Within the scope of the present application, intelligent network services are divided into second and first intelligent network services depending, correspondingly, on whether the data required to activate the intelligent network services can be transmitted on the signaling connection between the exchanges or not. In other words, the “first intelligent network services” refer to such intelligent network services the data on which can be obtained already in an early phase of the call before a number and subscriber analysis. A first intelligent network service can be activated either in an early phase of the call, or alternatively, it can be activated during the call by a function activated by a subscriber from the terminal during the call. The data to activate the first intelligent network services cannot thus be transmitted on the signaling connection between the exchanges. Correspondingly, the “second intelligent network services” refer to such intelligent network services the d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Service interaction in an intelligent network does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Service interaction in an intelligent network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Service interaction in an intelligent network will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3176603

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.