Serpentine wind turbine

Rotary kinetic fluid motors or pumps – With means for controlling casing or flow guiding means in... – Having specific features for water current

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C416S13200B

Reexamination Certificate

active

06616402

ABSTRACT:

BACKGROUND
1. Field of the Invention
This invention relates generally to the field of extracting usable energy from a moving fluid, more particularly to windmills.
2. Prior Art
The basic design of windmills, whether for grinding grain, pumping water, or generating electricity, has not significantly changed in hundreds of years. A stationary vertical tower supports a single upwind horizontal-axis rotor, which may drive a load either directly, or, more usually, through a mechanical transmission. The traditional windmill tower is rigid, with many historical examples actually being made of stone. A single large rotor served well on these early machines, since a large rotor spins slowly with high torque, perfect for turning a stone to grind grain. The mass of such a large rotor, combined with the primitive state of technology of the day, precluded a serious consideration of a flexible tower.
Currently, the “single large rotor” design still prevails, despite the fact that today's electrical generators require a much higher rotational rate than yesterday's grindstone. Excessive bending deflection of the tower on these modern windmills is seen as sloppy, inefficient, and even dangerous. The axis of rotation of the rotor is perpendicular to the tower, so excessive bending of the tower would tend to reduce the incident angle of the wind on the disk of the rotor, reducing the effective swept area. With their hard mounting, the huge rotors and gargantuan machinery that supports them do not take kindly to being shaken about, due to stresses caused by inertial, vibrational, and coriolis type forces. The rigidity of the tower therefore protects the machinery from excessive wear or damage. Often, at the price of aesthetic clutter and reduced utility of the land below, guy wires are used to further stabilize the rigid tower. This basic prior art design has been slowly refined over the centuries, by improvements in tower construction, blade design, transmissions, materials science, control systems, etc. Current models, however, normally used for generating electricity, are still only barely feasible from an economic standpoint. The rigid, vertical tower is often the most expensive component of a wind turbine. Since wind velocity increases with height, and available power is proportional to the wind speed cubed, a taller tower will result in more power collected. Usually the rigid tower must be strong enough to support not only the huge rotor, but the driveshaft, generator, and associated gearbox as well, in addition to blade feathering mechanisms, yaw control apparatus for directional guidance, and associated electronics and auxiliary mechanisms, commonly weighing many tons. Access for maintenance personnel, such as an interior stairway or ladder, is often built-in. Erection and even maintenance of such an unwieldy wind energy conversion system often requires a crane and other expensive equipment, to lift the heavy machine components to and from the top of the tower. Deaths have resulted from accidents during these procedures.
The idea that the bending deflection which a tower is so naturally inclined to undergo could be embraced and utilized as advantageous, rather than avoided as a flaw, or minimized as an undesirable characteristic, has not yet found a place in modern windmill design. Despite a general feeling among many designers that there “must be a better way”, alternatives to the “standard model” have thus far proven not to be cost-effective. Aside from the vertical axis designs, such as those of Darrieus, nobody is yet successfully thinking “out of the box” so to speak. Designers have been as yet unable to break away from the traditional, basic, medieval design. As we begin a new millenium, the stationary, rigid windmill tower, a veritable relic of the stone age, with its azimuthally adjustable cap, having a geared mechanism with a horizontal driveshaft, supporting a single large upwind rotor, as developed in the middle ages, yet persists.
Once the decision is made to erect such an expensive rigid tower, it becomes important to maximize the size and efficiency of the rotor so as to justify this high cost. The decision to use a single large rotor, rather than many small rotors, is based on a desire for simplicity, and economy of scale, but results in a whole new series of expenses: First, the circular area subtended by a spinning rotor is proportional to the diameter squared, while the rotor's actual volume (and hence its mass), is proportional to the diameter cubed. In other words, the larger the rotor, the less wind it can capture in relation to its mass. The significance of this cannot be overemphasized: The amount of wind available per unit rotor mass is inversely proportional to the rotor diameter. This means that a 10-meter rotor will capture 100 times as much wind as a 1-meter rotor, but will weigh 1000 times as much! So as its diameter has increased by an order of magnitude, its subtended wind collecting area per unit mass has decreased by an order of magnitude.
Of course, 100 of these smaller rotors would each require individual physical support at an effective height, as well as either 100 individual generators, or a mechanical means to combine the rotation of the individual rotors. In the current state of the art, the increased complexity and consequent higher manufacturing and maintenance costs, as well as possible aesthetic clutter of such a multi-rotor technology, have weighed in favor of designs using a single large rotor, despite the disproportionately higher mass. The huge, multi-ton rotors employed must be carefully designed to maximize aerodynamic efficiency, with complex mechanisms both for feathering the blades and for orienting the rotor assembly (yaw control) according to prevailing wind conditions. Balance and resonances must be closely controlled to minimize harmful vibration. Means for protecting the massive rotor from self-destruction in high winds, such as a feathering mechanism, are normally required. Also, the momentum and relative rigidity of a large, upwind rotor make it slow to accelerate, so the extra energy available in momentary or localized gusts is not fully utilized.
A downwind design is well known to avoid several of these disadvantages. Since the downwind blades are pushed away from the tower, rather than toward it, they are unlikely to contact it. A downwind design can therefore use lighter, more flexible blades, which can simply bend to avoid damage in higher winds. These lighter, more flexible blades can also take better advantage of momentary gusts, due to their resilience and ease of acceleration. Finally, a downwind design requires no yaw control mechanism, as it will tend to naturally orient itself in the proper direction. In the current state of the art, however, despite all of these advantages, downwind designs are not favored, due to:
A) the large wind-shadow of current state-of-the-art, thick, rigid, vertical towers. The wind-shadow reduces overall efficiency and can cause fatigue from stresses due to resonant vibrations induced by the repeated passage of the blades through the shadow. The upwind side of the tower is much less affected by wind-shadow.
B) the fact that the generator is often horizontally mounted at the top of the tower, and the electricity must be somehow transported to the ground; Over time, with no active yaw control, simple electrical cables are likely to eventually become twisted too far in one direction, so that slip rings must be used to transmit the electric power with rotational freedom. Slip rings add complexity, and are not well-suited to larger installations. Once active yaw control is deemed necessary, the downwind design has lost its main advantage of passive yaw control, so an upwind design makes more sense.
Vertical-axis machines, such as a Darrius or a Savonius, also avoid many problems of single-rotor, upwind designs. For one, the aforementioned yaw control problem is nonexistent, since vertical axis turbines work equally well no matter what the direction of the wind. Also, the gene

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Serpentine wind turbine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Serpentine wind turbine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Serpentine wind turbine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3089875

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.